

,.0'°‘\

e ol atly LS Jat) ali sk
(MATLAB)

‘ Jae)

gl glia Cp dm (AU

tealall da s clullaie JlaSiul dadia dllu
k) Acait g ity g0 Auatigh B
(Al S Ll g i g)] Ania)

Fusig) Al
3l ae b)) dadls
Aoy g Ay) ASlaal) — Baa
a Yooy sl A Y EYY aadl) gd

K'Y

ol oYl Al gy Sl s gl s

oAkl g S

sl N Gy 3l e DUl gadlall gt aeal
ooo }lj’u.nj‘y ;N‘:};} oo : LAM dté
(V) Al

g g sadlsl ey S El all A an g
(s> 9)8

058l Balaws Juzaldl) salea s g3l SEL (asl
a8l 4 3 g cpdillaiiy de faally dmw s daal
<l

Aarigh aadiy (g il A slimey Sl aasl L
el Kl (el s cliulad) A 5 430 1<)
L..;)A\.}aj\ Jal § (5 CL\J J):\SJS\ Bl)::JSS\

il o285y LS ol sy ol
(MATLAB)

sl glia (g L o AL
waldial

a3 e el 138 (DY Jail JalSie geali ys Jas o3 Ala)l 520 6
5sall (Al e rlgie SO (e ayaed) peali pll Jady 5 20
o Al oy il 5 A0 gl Jlall 3 jaal Jase adlAT) g il
(bl Qb g e saga s s () D gl Juald Ad e g S gual
5 5all ol gall g4 alall @ jlall Al A dash ol daall 03 s a US
il AL e ph A g4

i ale g4l ale Jlae 3 Gfialdl ac sl galiull 13a
hale b O sheny Al £ LY U8 e Gy el 138 o LS g
o) D sl 4 55 5 ey i yall g Qb gy Eam (@ DASH al
BAY) AW By, el i i se (b e Aapaall 0
el Al o€ il 138 Fie Jlastiad ag S0 3 slale (ymy o~ 58
A2l 5 3e) 3l

die O geall) A DS %3;3 AAS Y o i Al ods

P Jilal g dadlaa a\;ujj\;&!‘ O 22e (G e e LS ¢ty
Agd dpaly) sl

gasana’ (il g g aadiusall A5LE paanal 488 Al Hl e s LS

PRTPRIRIECIE FE-SONCH PRECHOU U RINE L

e o) a3ty LSH Jalal geals yy _y ghad
(MATLAB)

sl gl (Ao (AU

adlal
OIS (i 4 618 Le pgia g pDISH Aallas g oot (8 HASH Gy
Al Cas A TN GadatuY due) sh 428 s 2V AVE Gle b
A G OSar S it 5 bl) ol 2V AVA By D paall Y
A1 A9) 3 SN YLl Aabeiall JSLa e dpad) LIy Aallas
il g & guall) 20 i adALY A8yl ol 5 S 2l e
O s s Gl 1290 Hle Gy sene st e) Digal
cre el a5 Al Aalladl 35k e WASH Aallae 3 JES (praile
P IEPIVPPYS FOURKIS-TWA 'R SU-ILREN
zealipall 138 (USH Jilat) JelSie gl o ae o Al 02a 8
ADIS (o pdaie Jinad (e 280l (S bl 138 (DL Canl e
On gl pailiad (o GaDALLY Badde dalad Gllesy oLl &5 (4
Jusll 3l 5ial Jaee s (Pitch frequency) il 32,5 pailaddl oda
Al Tawald 3aal N AN 8 Lyl die Seall leall 845 uall
dagpidlly gagl o pl clielias 4 5 (Formant) dwlud) <das 5l
e Ag geall Jladl 3 el Gase Blall g 08550 (e z LA e el 50

clileall o i 23 5 et 20 5l lediae (Sl AW g iV g adl

sisaeddl e (Voiced) Jseaall @ seall Joad Load ald yll Ly p 58 A
thial (Spectrogram) 4gishall 3) guall (a yai o 58 LS (Unvoiced)
oL e aae Ll eali i 138 28 Jilas Adee JS jlidd) 22U
O sl pnid gl pul) aadiial L il aat (5 (Options) Jl s
sl e alad) 1aa 5 0 dilide il Jany (g3 5 Jab gall 020
die Gigall pl palgadgddee A N ods S8l al
aax g OlaiY) 1igd 4alSal 8 dilani BILAD B 508 (5 5 S ¢ Gl
5 ranl e gal D) glad bk Sl LS 2y pmal) 45 3ga
ol lgall s il Sleall (2 gV 2 A) dal G dpaasall Gl
§ il S Feeall Slead DS pal e ki Slgall
zigdze g Aliac (e 8 jle Laay (Vocal cords) (hfiseall (Sl
FUCHPRIE SYCIPUN PO JUBIUPE PR vl 5 WP g RIS R
ol 5 ¢ Jn) il Bl BLgLE saiall ¢ gl 01253 My
Ol (Elall Al faall raayy il audll oo JON audl | 5edl
(s i D ae el §6 Ladie SLSY jaayy, iy A
COliasll g jalall QM\M‘JM\UJM‘MQMJ
o) e ol sell e T ok (ladss il 5050 e o paaall (i y G dadl)
Gl iy jlat Ao gane (b 5 -5 yaiall liag o LoV Y - 5830
Ala 6 LIS Al cabiang T y 1385 A (L5 gaall o 5350 el
O sl dass a3 el ga Jgalyg - puiill Alla G 4dle pa Lac L)
o 5e) BN abaiy ot SISH BN S o g A s0 Cladd ()l pal

OA&_’ASEB&J_,&B_);}AS\ é}ﬁcﬁg_u\ clacY) ‘53‘\3_).;_'\;3\04‘;_’:_9..43\

et 55y dliall e g ging g3 pill Caysaty ¢) Chysalll 5 SLad
5alally e Lime ¥l o2h (e DSy, it dlly ey g « Ol 5 (Olalll (Lo
o) pealiall 5 (sf Ay ad o sl () Led g3 g cLeiSS g (A gual
LG PRSP i U P USES S PREEIPA S PEE SRR e
iy s a2 oA (el Ul dpang Lo 5o 1Y Ghill am gad
Bale (885 A1) S alSia (KL, pual) (o g Ve gzl 54 syl
gl AL Y ¢ DS ol cpgiad D pal g 05l clga 3 g2 222y
slmc ¥l ods any U jlie) GpuigeS Gady "agsl 2l 0 a8 IS L e
ey fap 53 Jpall (5) Jio lld 5 Lehich Jol g Led A g a8
b 5 a8 ALE a5 Lguany 5 ¢ i) iy gatl oliZl (Y e juall Aaid
Jiags) sgaall Ggall 2 5 AMa 8 (A5 saall Juall) 3 jaiall y 83
Ol 9y (s gegell 2 sl
«(Vowels) 4ila s (Consonants) Ziska I < suadl Ciina
if gl J gV paday il clgiliim g o gual) dagle Al 2 Aaiis Al
5 el ATilall Y, il g pll Y Glall e ol sel s 0 S
¢ Gigall ez a5 e disa ooy Gile Ly 50 o) 5o palaay
o Al) pa¥) gd Andliall Gl pua) Ldl 3) ggane LedS 8l gl
Gy JS 5 s sage o B enn O3S0y Bilay ol gl plabadl o (Bl
el (3hil die il 5 e oulind 58 peall Culia 58 (e sags
‘;ngﬂ;\ﬁmah@‘tsu_qwsw}@uagzoi sl ¢ a5 sl
dand el O 5S yeally . senal Cpall siad Gufigall 0340

LAY e Lataal G gaall 035350 <l 5284 5 (Glottis) el

3 (ddnal & geally Blaill die udfill o) o (B b 5 el dia ¢ uag
Ol QX U Bile o5 aiall cho)y e dBsma ¥ 6l sl Bl
O e Vs Ghdd s O gal

Al gl g Ay plan U AELAY Al w M ed s 8 AN LY LS
Aallae s Jilad, DUSH b at pali py b p330 asal) il il sl
Jaall 5§ (Time domain) e Jaadl (8 055 O oSy 22U
e Jalaill 2 e 3l aeadl 8 Eus o (Frequency domain) ¢34
52350 Jlaall 3 L aall g (3EaY any adATLY § 5uilie 8 LY
&b pra oo il Jlad) | Agguall 8 LI 58 JBS ae Jalal) p8
S8 o Aadle ()9S5 08 Sl g gaall allad yaspoa gy Jledd
agail OB Al 5 JLaY) (s gun s

5 iV paibad o b Jiladll cldee JS b) (o
Jilad 35k e 232) B G il 138 el pa ey Lt 335 40 gl
e adie 380 L £y 5« (Short Time Analysis) sl (o3
Gl L g A8Ual aie s DA (e 4dle cOdatl a5 5 & guall
b s el (0 i s pagll il 55 sl @il (e)
356l

dadad s\);;s\ <zl e "Ag geall 4 5all mllaias (Bl
Cra o g cdals g Ciguall g o8 JSI8 A s il de geaa e 4
Aaiss lley il guall (e gea JS 5 AELE g1 55YY I3 (5 AN S g
il s Agseall o el g At gl o 5all e SV e Ol g Al

ki g il JM\QTA;M\JQ)SSJ@}A\ Sl 8 adal Al

-

CJSE e Ag pall el adiad g Dlaa il 02s dic da gall Ao gL)Y
o il g S A gl il sl 238 (53 g S gl (5 yanal
5 e DU I BRI By e iy sl o300 e (Jpuaal
iy G 35 DA ke (8 Al G Sia IS (g0 el Cshal
130 8 fan Al 5 055 B (Y) e e (IS pdalall (955 ¢
e Alle Bale S5 S Fipm Yoo M Ve Gl B 0 39 a bl
bl g Jlalayl
avaaill aadiiaall AL arenat] Gl e Giaaty I QL
raranaill (5alis anl (e cgalinell LS Jd el Ju8 Jamy e IS Jiny
Al aadied) R3S 8 yeday (IS JS Doalsie) f a1y SV (Adabudl
g sl Baailad iy QIS () g s W aebun 53 5 cam g B jaa
te 5l g A I AELED (e 58y 2DASD s gl
Aol ol A o 8l (axis) (osse 9 (menus) a8 ad
BN aie Al Aidall 5 g all Aaild g (Tool menu) <53
el 30 53 4wl g L sagall (o sgaall Dipall Juadd il
Sgeall g law Al 10y a0) Jiaill A8 g RSl aie 4l
.(submenu) 4 b ad 8 Led 2l sall 038 ey | (Play menu)
gl &5 S Byl (e A gaall LYY ga malined 13) Jalal
5 ey Jilaill Clilae @35 Jinadl Alae 22y, Y onsall 3 Sl
Ay (e .em‘ s e jslad jalelendl Gyl g Gla 3l
s I Dgall Jmd Adae adall Jlae B el) 13 Sl

any . ay yall G g] Blaill e oLkl iB (e p23500 (s gy

h

O Sy el el e sage DipeaS sl gl jamy il
ot A O geall A e gl Bl G el S ey A paa Ja
Crgeall a8 A) I VA e pSal f L sage saem &) seane Joa!
Sl ADle Ll A pem i pie pgodl (im el pans s geedd) 0) el
e e G i 1 3 ¥ el G el Y813 (Pitch frequency)
Laal gy A0l & yae b laill o ge Slaadl JLilaY 5o
Sl e J geanll oy yall G i s 5 (e g galiall SR G iy sl
LAY sl Al e damill Ay, DA Cye dasaall

KR AR TPUNIFCIN ST JOPSUI IR JE
A8 JS o o (e g ecilall o8 o Qi A0S 5l PAA (e cJpaailly

geally @l Lae e Ao il 200 g8l IS 5 gl g La 3

DEVELOPMENT OF A SPEECH
ANALYSIS PROGRAM USING MATLAB

By

Dafer Saeced AL-Amri

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and

Computer Engineering (Electronics and Communications)

FACULTY OF ENGINEERING
KING ABDULAZIZ UNIVERSITY
JEDDAH - SAUDI ARABIA
DHUL-QADAH 1422 H/ JANUARY 2002 G

DEVELOPMENT OF A SPEECH
ANALYSIS PROGRAM USING MATLAB

By

Dafer Saeed AL-Amri

I certify that I have read this thesis and that in my opinion it is
fully adequate in scope and quality as a thesis for the degree of
Master of Science.

Thesis Supervisor

-
Dr. Ahmed S. Balamash

" DEVELOPMENT OF A SPEECH
ANALYSIS PROGRAM USING MATLAB

By

Dafer Saeed AL-Amri

This thesis has been approved and accepted in partial fulfillment
of the requirements for the degree of Master of Science.

Examiners:

(/,_ /‘Q&"L:

Dr. Ahn}ed.SMesh , Examiner/Supervisor
Dr. Rabah W, Aldhaileri , Examiner

{ oo

Dr. Ali M. Rushdi , Examiner

Dedicated to
my dear father, mother, wife, and brothers with

great love and appreciation

ACKNOWLEDGMENTS

By the help of ALLAH, I prepared this thesis for the
Master of Science degree in Electrical and Computer Engineerifng
(Electronics and Communications).

I am grateful to my supervisor Dr. Ahmed Said Balamesh
for this encouragement and all the time he has given to supervise
my work. Many thanks are extended to the other members of the

examining committee.

DEVELOPMENT OF A SPEECH
ANALYSIS PROGRAM USING MATLAB

DAFER SAEED AL-AMRI

ABSTRACT

In this thesis. @ complete speech processing and analysis software is
generated. This package is based on MATLAB, and has the following
elements of analysis: Energy, Spectrogram, Pitch, Formants,
Voiced/Unvoiced classification, and Spectrum. Each of these types of
analysis has its own options and parameters to change and control the
analyzed operation. In this thesis, I deal with speech production, speech
processing and analysis algorithms and mathematical background, and
include some hints on graphical user interface design and a user

manual for our speech analysis software.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS
ABSTRACT

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

CHAPTER1 INTRODUCTION

CHAPTER II SPEECH PRODUCTION SYSTEM
2-1 Introduction
2-2 Components of Speech Production System
2-3 Speech Production
2-4 Human Speech System Model
2-5 Discrete Time Model for Speech Production
2-6 Acoustic Characteristics of Sounds
2-6-1 Vowels
2-6-2 Consonants
2-6-3 Semivowels

2-6-4 Phonology

vii

vi

vii

X1

Xiil

12

15

15

CHAPTER IlII SPEECH PROCESSING

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

Introduction

Time Domain Processing and analysis of Speech
ST Energy

ST Autocorrelation Function
Voiced/Unvoiced Classification.

Pitch Detection Using Autocorrelation
Liner Prediction

Frequency Domain Processing and analysis
Smoothed Spectrum Using LP
Spectrogram

Formants extraction using LP

3-11-1 Peaks vs. Poles

3-11-2 Algorithm steps

CHAPTERIV GRAPHICAL USER INTERFACE DESIGN

4-1

4-2

4-3

4-4

4.5

4-6

4-7

4-8

Introduction

Design Principles

The Dynamic Interface
Design Process
Handle Graphics
Speech Analysis GUI
Basic Idea

GUI code

viii

17

18
21
22
23
24
25
26
27
29
29

30

33
33
34
34
35
36
36

38

CHAPTER V SPEECH ANALYSIS SOFTWARE

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

Intorduction

File menu

Spectrogram menu
Voiced/Unvoiced menu
Pitch menu

Formants menu

Energy menu

Spectrum menu

Tool menu

Play menu

Some application of Speech Analysis Software

CHAPTER VI CONCLUSION & FUTURE WORK

REFERNCES

APPENDIX A

39

39

40

41

41

43

44

45

45

50

51

52

53

56

Table

2.1

LIST OF TABLES

Formant frequency for typical vowels

]
2
o

LIST OF FIGURES

Figure
2.1 Human speech system
2.2 Human speech system model
2.3 Discrete time model for speech production
2.4 Classification of phonemes
2.5 Vocal tract, waveform, and formants of sounds /a/ and /i/
2.6 Spectrum of the /a/ and /i/ sounds
2.7 The vowel triangle plot of F1 and F2 for vowels in English
2.8 Articulatory position, waveform, and formants of sounds /—/& /<

2.9

Articulatory position, waveform, and formant for sounds /¥ & /¥

2.10 Waveform and spectrogram of nasal sounds /o/&/./

2.11

3.1

3.7

3.8

4.1

4.2

Articulatory position, waveform, and formant for semivowel / s/

Speech waveform

The effect of varying window length on Energy Computation
Decision process for the peak picking algorithm

Spectrum for voiced speech using 25.6 ms Hamming window
Smoothed spectrum

Wideband spectrogram

Narrowband spectrogram

Peak mapping algorithm

Handle Graphics

Speech Analysis GUI

g structure tree

Xi

24
26
27
28
28
35
35
36

37

5.1

5.2

53

54

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

Speech Analysis software

File menu
Spectrogram menu
V/UV menu

Pitch menu

Pitch curve
Formants menu
Formants History '
Energy menu
Spectrum rr;enu
‘Tool menu
Spectrogram Options
Energy Options
Formants Options
Pitch Options
Spectrum Options

V/UVoiced Options

Play menu

xii

39

40

40

41

42

42

43

44

44

45

46

46

47

47

48

48

49

50

ST

STFT

LP

SLP

ms

LIST OF SYMBOLS

Short Time

Short Time Fourier Transform
Linear Prediction

Speech Language Pathologies

Root Mean Square

Xiii

CHAPTER1

INTORDUCTION

Speech processing and analysis relies on basic research in the speech and hearing
sciences, some of which is centuries old, and much of which is ongoing. Speech
analysis has very wide medical applications. It is begin used by medical doctors to
diagnose some speech pathologies. Also, more recently some scholars of Quran are
considering the use of speech analysis as a tool for teaching the art of perfect
recitation (tajweed) [1].

In the production of speech, sound is generated in the vocal system either by
vibration of the vocal cords or by the creation of turbulent air flow at a constriction.
The sounds thus produced are spectrally shaped by the transmission characteristics of
the vocal tract which consists of the pharynx and the oral cavity and, in some cases,
the nasal tract. This speech production process can be modeled as a slowly varying
source which produces a quasi-periodic pulse signal for voiced speech or a flat
spectrum random signal for unvoiced speech. [2],[3]

Speech analysis is simply the process of estimation the time-varying
parameters of the model for speech production from a speech signal that is assumed
to be the output of the assumed model.

Speech analysis is a fundamental ingredient of almost all the important
technical problems of speech communication. A speech analysis system when
coupled to a corresponding speech synthesis system comprises a vocoder. Such
systems can provide a means of efficient transmission or storage of speech signals.
Speech analysis systems usually serve as the “front end” for systems for automatic
speech recognition and for automatic speaker verification systems. Speech analysis is
also involved in many aids to the handicapped such as speeded speech for the blind
and visual training aids for teaching the deaf to speak. Still another area where
speech analysis plays a fundamental role is in enhancing the quality of speech signals
that have been degraded by noise, reverberation, or by production in an unusual

atmosphere.

38}

One of the most important parameters of speech is the fundamental frequency
(pitch). A pitch detector is an essential component in a variety of speech processing
systems. Besides providing valuable insights into the nature of the excitation source
for speech production, the pitch contour of an utterance is useful for recognizing
speakers, for speech instruction to the hearing impaired, and is required in almost all
speech analysis-synthesis systems. A wide variety of algorithms for pitch detection
have been proposed in the literature [4].

Pitch detection algorithms can be carried out in the time-domain [5], [6], [7],
the frequency-domain [8], [9], or using a hybrid of both [10], [1 1].

Accurate determination of the resonant frequencies of the vocal tract (i.e.,
formants) in various articulatory configurations is of interest both in the synthesis
and in the analysis of speech. For vowel sounds, in particular, the formant
frequencies (especially the first and second formants) play a dominant role in
determining which vowel is produced by a speaker and which vowel is perceived by
a listener.

Several methods have been used to estimate the formant frequencies of
vowels. Almost all of these techniques have as a common starting point; the
transformation of the acoustic data into spectral form [12], [13], [14].

An algorithm for the determination of first three resonance frequencies
(formants) of the speech signal has been proposed in [2].

It is frequently ﬁecessary to know whether a segment of speech under
analysis is voiced or not. Many algorithms for voicing decision has been proposed in
[15], [16]. In addition to the voicing decision, algorithms for silence [17], [18] and
mixed [19] excitation decision have been developed.

One of the most powerful speech analysis technigues is the method of linear
predictive analysis. This method has become the predominant technique for
estimation the basic speech parameters, such as, pitch [20], formants [2].

In this thesis, we develop a speech analysis package using MATLAB, that
performs a wide variety of speech analysis. This package is very flexible in the sense
that adding new menus or new types of speech analysis is very easy and involves
minimal changes.

In Chapters 2 and 3, we give a general background on speech production and
analysis. Chapter 4 summarizes the general considerations taken into account in the

design of the graphical user interface (GUI) used for our package. Chapter 5is a

_user’s manual for our package. It gives detailed description of every menu and the
parameters involved in each type of analysis. In Chapter 6, we conclude by
summarizing the contributions of this thesis. We also list several suggestions for the

future improvement of our speech analysis package.

CHAPTER II
SPEECH PRODUCTION

2.1 Introduction

Speech production represents many marvels and astonishing well-synchronized
mental and neurological abilities and activities. It depends on a physical system
consisting of various elements that may have dual functions such as the lungs
(breathing and speech generation). The functional significance of the various
elements pertinent to speech production varies from one language to another,
depending on the acoustical sounds the language uses. For example, in Arabic, we
use deep-throat sounds such as /3<¢/, which are not present in languages like
Chinese or English [21]. These deep-throat sounds rely heavily on certain
articulators, which make their significance more important than in other languages
that do not make such sounds. Moreover, we notice a degradation in sound quality in
case of an imperfect articulator has a problem such as a congested nose or a broken

front teeth.

2.2 Components of the Human Speech Production System

The speech waveform is an acoustic sound pressure wave that originates from
voluntary movements of anatomical structures which make up the human speech
production system. Figure 2.1 shows the components of the human speech
production system. The gross components of the system are the lungs, trachea,

larynx, pharyngeal cavity, oral cavity (mouth), and nasal cavity (nose).

Hard palate

Soft palute
(vetum)
Nasal cavity

Nowtrid

Phugyngeat
Cavity

Lip

Tongue
Larynx
Teeth

Esophagus Oral (or buccal) cavity

Figure 2.1 Human speech system

In the following we give a brief description of each component:
Lungs (053 are considered the voice generator since the expelled air out of the
lungs is used to form the various acoustical sounds by passing through the vocal and
nasal tracts.
Trachea (3 s¢¥ 4o=dl) forms an air tunnel from the lungs to the throat.
Larynx (3,>3=Y) is the opening between the vocal cords at the entrance of the oral
and nasal cavities. Generally, the larynx has four positions which are open (unvoiced
sounds), open with repetitive closure (providing periodic excitation for voiced
sounds), narrow opening (noisy sounds) such as /- / or closed such as / «/.
Vocal cords (%5s<Y Juall) are two strips of muscular fiber that meet at the top of the
trachea. They are more rigid and longer in males than they are in females. They
vibrate at 100-150 Hz in males and at 200-300 Hz in females. If the vocal cords
vibrate with the acoustical sound, the sound is voiced such as in / 3¢}/ and if they
don’t, the sound will be unvoiced as in / <« [22].
Pharyngeal cavity (@ﬂ-}“ < 52il) forms a resonance cavity that amplifies some
sounds such as / e b h/and is responsible of producing the throat sounds
suchas/§ ¢« «&.
Oral cavity (& < s23) consists of the following articulators:

e Tongue is a moving articulator that takes different positions to contro] the
air stream producing various sounds. As a sound producing element, the
tongue can be viewed to consist of five parts. These are the tip producing
sounds such as in /<& «& ¢/, the front producing sounds such as in /cs/,
the middle producing sounds such as in/u</, the back producing sounds
such as in / ¢/, and the root producing sounds such as in /¢/.

e Lips consist of a fixed part (upper lip) and a moving part (lower lip) that
moves with the lower jaw. The upper and lower lips are equally involved in
producing sounds like /s« «a/ while only the lower lip has a distinct role
in producing the sound /¥ by touching the upper teeth.

e Teeth: The front upper and lower teeth work with the tip of the tongue and
the lower lip to produce sounds such as /& ¢3«& /) and work with the lower
lip to produce the sound /.

e Hard palate (<1<} &isl) works with the tongue to produce sounds such as
lzed e/, |

e Soft palate (5> &isl) is a soft muscular tissue that include the velum
(3. The velum is a hanged piece of meat that works with the tongue to
produce sounds like /& «¢ «&/.

o Epiglottis (J«34 Jud) is located at the glottis entrance. Beside blocking the
breathing tunnel during eating or drinking, it helps in producing sounds like
131.

o Jaws (0\Si) consist of a moving (lower) part and a fixed (upper) part that
work with the other articulators in producing various sounds.

Nasal cavity (&Y' < 5230) has a fixed shape that acts as a resonance cavity when air
passes through it. It plays a major role in producing certain nasal sounds (432 like in
1O <al.

2.3 Speech Produéfion

The acoustic sound pressure wave is generated through expelling inhaled air from
lungs through trachea, causing the tensed vocal cords within the larynx to vibrate in
the case of voiced sound. The airflow is chopped into quasi-periodic pulses that are
frequency modulated when passing through the throat, mouth and nasal cavities.
Repositioning the articulators consisting of vocal cords, velum, tongue, teeth, jaw,
and lips produce different speech sounds.

One of the principal features of any speech sound is the manner of excitation.
The two elemental excitation types are voiced and unvoiced excitation.

Voiced sounds are produced by forcing air through the glottis or opening
between the vocal cords. The tension of the vocal cords is adjusted so that they
vibrate in oscillatory fashion. The periodic interruption of the subglottal airflow
results in quasi-periodic puffs of air that excite the vocal tract. The sound produced
by the larynx is called voice. An example of a voiced sound is the vowel 3 Sl
/4L sk in the utterance of "daw "

Unvoiced sounds are generated by forming a constriction at some point along
the vocal tract, and forcing air through the constriction to produce turbulence. An

example is the /o sound in "du".

2.4 Human Speech System Model

Speech production can be modeled as an acoustic filtering operation. The acoustic
filter consists of three main cavities; pharyngeal cavity, oral cavity, and nasal cavity.
The pharyngeal and oral cavities are grouped into one unit referred to as the vocal
tract. Figure 2.2 shows a speech production model with the vocal and nasal tracts
shown as concatenations of tubes of non-uniform cross-sectional area. The sound
wave propagation can be analyzed using the theory of wave propagation through

transmission lines [22].

Pharyngeal

Vocal cavity

cords

Trachea

Lungs

Muscular
force

Figure 2.2 Human speech system model

The vocal tract begins at the output of the larynx and terminates at the lips.
The average vocal tract length is about 17 cm in adult males, 14 cm in adult females
and 10 cm in children. Repositioning of the vocal tract articulators causes the cross-
sectional area of the vocal tract to vary along its length from zero to 20 cm?®. The
nasal tract begins with the velum and ends at the nostrils. Typical length of the nasal
tract in an adult male is 12 cm.

Acoustic coupling between the nasal and vocal tracts is controlled by the size
of the opening at the velum. If the velum is lowered, the nasal tract is acoustically
coupled to produce the nasal sounds of speech. For the production of non-nasal

sounds, the velum is drawn up tightly toward the back of the pharyngeal cavity,

effectively sealing off the entrance to the nasal cavity and decoupling it from the

speech production system.

2.5 Discrete Time Model for Speech Production

Voiced excitation can be modeled as an impulse train generator producing a
sequence of unit impulses which are spaced by the desired fundamental period. This
signal. in turn, excites a linear system whose impulse response g(n) has the desired
glottal wave shape. Unvoiced excitation can be modeled using white noise. By
switching between the voiced and unvoiced excitation generator we can model the
changing mode of excitation. Vocal tract is modeled be the transfer function H(z) as

shown in Figure 2.3 [22].

Gain for voice source

—> train > pulse model
generator G(z)

Voiced/ Vocal-tract n
Unvoiced ™S—— 1P
switch H(z)

Random

noise ———u><

generator A

Gain for noise source

Figure 2.3 Discrete time model for speech production

2.6 Acoustic Characteristics of Sounds

In all languages, sound can be classified based on various descriptive features like
manner and place of articulation, articulator organs, type of excitation, sound’s
volume, length, resonance, and many other features. Acoustical sounds can be
covered within three broad classes of sounds. They are vowels, semivbwels, and
consonants. Each of these classes may be further broken down into sub-classes. They
are related to the manner, and place of articulation of the sound within the vocal

tract. Figure 2.4 shows a classification of the Arabic language phonemes [30].

Phonemes
Silayi g8l
Vowels Semivowels Consonants
cmfmj\ il geall BLLE il guall

Front Mid Back Liquids Glides
Al Jaug cals il Ay

Stops Fricatives Nasal Affricates Vibrant Lateral
a AN i RS - A A j Qs

Figure 2.4 Classification of phonemes

2.6.1 Vowels

Vowels are voiced sounds produced by exciting a fixed vocal tract with quasi-
periodic pulses of air caused by vibration of the vocal cords. Vowels are long in
duration (compared to consonant sounds) and are spectrally well-defined. In vowels,
the expelled air does not meet any obstacle in its way out. Vowels constitute 48 % of
the Arabic language. In Arabic language there are six vowels:
(Aish o - gl Ay sla 3 € o L (AL gl AaT8 AW B el Aaniall 63 el 3 5N 3 jpail dazill)
Vowel sounds are characterized primarily by the hump and height position of
the tongue. Figure 2.5 shows the tongue positions, waveforms, and formant (resonant

frequencies of the vocal tract) plots for the vowels /a/ and /v/.

N W

Frequency (kHz)

20

10 /i/

-10
-20 L . . Ly
Frequency (kHz)

Figure 2.5 Vocal tract, waveform, and formants of sounds /a/ and /1/

10

In forming the vowel /a/ (lisb3aid) as in ”Jdles “ the vocal tract is open at
the front and somewhat constricted at the back by the main body of the tongue. In
contrast, the vowel /i/ ({lish 3) as in “usS* is formed by raising the tongue toward
the palate, thus causing a constriction at the front and increasing the opening at the
back of the vocal tract. The acoustic waveforms in Figure 1.5 show the quasi-
periodic characteristic of voiced sounds. The vowel (ilish3 uS)shows a low
frequency damped oscillation upon which a relatively strong high frequency
oscillation is superimposed. This is consistent with a low first formant and high
second and third formants. Table 2.1 shows the first, second, and third formant

frequencies of some American English vowels [23].

Symbol Example F1 F2 F3
fi/ Beet 270 2290 3010
il Bit 390 1990 2550
lal Hot 730 1090 2440
/u/ Foot 440 1020 2240
u/ Boot 300 870 2240

Table 2.1 Formant frequency for typical vowels [23].

The spectrograms for the two sounds are shown in Figure 2.6. Where the
spectrogram is a two dimensional representation of the time dependent spectrum in
which the vertical dimension represents frequency and the horizontal dimension
represents time. As depicted, vowels are easily identified due to their high energy

resulting in intense formant patterns.

i1

Figure 2.6 Spectrum of the /a/ and /i/ sounds.

11

The overall length of the pharyngeal-oral tract, the location of constrictions
along the tract, and the narrowness of the constrictions affect formant frequency
locations for vowels. Vowel formants are closely related to the hump and height
position of the tongue. Figure 2.7 shows the second formant (F,) drawn on the y-axis
versus the first formant (F;) drawn on the x-axis. The three vowels /i/, /a/, W/
accounted for in many languages including Arabic are distinctively classified from
each other at the vertex of the triangle formed by connecting their respective extreme

formant locations as shown in the figure [23], [24].

2400 -

2000 -

1800 -

F, tHz)

1400 -

1200 -

1000

Figure 2.7 The vowel triangle plot of F1 and F2 for vowels in English [22].

As depicted in Figure 2.7, the greater the constriction in the front half of the
vocal tract, the lower the first formant. Thus /i/, which has a great amount of
constriction in the front half of the vocal tract has a low first formant while /a/, which
is realized with a much wider opening in the front half of the vocal tract has a high
first formant. The greater the constriction in the pharynx region, the higher the first
formant. Thus /o/ has a lower first formant than /i/. The second formant is lowered by
back tongue constriction while it is raised by front tongue constriction. Thus /u/ has a
low second formant, while /i/ has a high second formant. Lip rounding lowers the

frequencies of higher formants (especially F2 and F3) [24].

12

2.6.2 Consonants

Generally speaking, consonants have weaker energy than vowels. The first formant
generally rises during the transition from a consonant to a vowel (and inversely falls
from a vowel to a consonant) especially if the consonant is voiced. In contrast with
vowels, consonants normally have specific articulators and place of articulation.
Their number is much more than the vowels in all languages, and they can be voiced
and unvoiced. Consonants are classified as stops, fricatives, nasals, affricates,

repetitive, and sideways. The various classes of consonants are discussed below:

oy S VNN
*”}WMWW'W ['# w | N ‘ M

Frequency (kllz)

Figure 2.8 Articulatory position, waveform, and formants of sounds /< and /<Y [22].

Stops (Plosives): Stops are characterized by a silent period during the
consonantal closure where pressure is built up followed by an abrupt onset of energy
— a noise burst- at consonantal release. There are eight stop sounds in Arabic, which
are /< ¢s «3¢d (ua b3/ The airflow stops at different places in the oral tract.
For example in the /< / sound the airflow stops at the lips and in the /2 «&/ sounds
stop at the tongue tip touching the teeth. The properties of stop sounds are highly
influenced by the vowel that follows the stop consonant. Figure 2.8 shows
articulatory position, waveforms and formants of the voiceless stop consonants /< /
and /< /.

It is readily seen that the duration and frequency content of the friction noise
and aspiration varies greatly with the stop consonant. Although during the period of
total constriction in the tract there is no sound radiated from the lips, there is often a
small amount of low frequency energy radiated through the walls of the throat. This

occurs when the vocal cords are able to vibrate even though the vocal tract is closed

13

at some point. The vibration of the vocal cords distinguishes voiced from unvoiced

stops.

Fricatives: The narrow constrictions associated with fricatives result in the
production of turbulent sounds. There are thirteen fricative sounds in Arabic, which
are /& «¢ b3 ded o (icpa o diia/, Because of their relatively low energy,
some fricatives such as/</is difficult to identify. On the other hand, whistling
fricatives /Ui« 3 «u= ¢/ can be identified from the spectral shape sampled during the
fricative itself. The location of the constriction determines which fricative sound is
produced. For example, for the fricative /<& / the constriction is near the lips; for /3/ it
is near the teeth; for /us/ it is near the middle of the oral tract; and for /Jk/ it is near
the back of the oral tract. Figure 2.9 shows the waveforms and spectrograms of the
fricatives /<+/ and /(i /. The non-periodic nature of fricative excitation is obvious in

the waveform plots.

-15 4 L 1 Ly
0

Frequency (kHz)

15

-5
~10] ! L I

Frequency (kHz)

[=]
RS

Figure 2.9 Articulatory position, waveform, and formant for sounds /¥ and /< [22].

The voiced fricatives as in /J/ differ from the unvoiced ones as in /= / . For voiced
fricatives the vocal cords are vibrating, and thus one excitation source is at the
glottis. However, since the vocal tract is constricted at some point forward of the
glottis, the airflow becomes turbulent in the neighborhood of the constriction.
Nasals: Nasal consonants are characterized by letting air go through the nasal
cavity and closing of the oral cavity at some point. In nasal sounds the velum is
lowered so the sound radiates at the nostrils. There are two nasal sounds in Arabic,
which are /¢ < /. The constriction for the nasal consonants /»/ is at the lips and for

/07 is just back of the teeth. Although the oral cavity is constricted, it is still

14

acoustically coupled to the pharynx. Thus, the mouth serves as a resonant cavity that

traps acoustic energy at certain places in the oral cavity [25].

Figure 2.10 shows typical speech waveforms and spectrograms for two nasal
consonants. The spectrograms show a concentration of low frequency energy with a
mid-range of frequencies that contains no prominent peaks. This is because of the
particular combination of resonances and anti-resonances that result from the

coupling of the nasal and oral tracts.

Spectrogram Spectrograrn
T T T T
10000 ' ' ' ' ' " " " 7 10000 |

6000

g

Frequency, Hz

4000 b

Frequency, Hz

2000 - E 2000+

0 0
0 05 1 15 2 25 3 35 4 45 0 05 1 15 2 25 3 35

Time, Seconds Time, Seconds

/o /&
Figure 2.10 Waveform and spectrogram of nasal sounds /o/&/,/ [22].

Affricates: The Affricates consonants are dynamical sound that can be
modeled as a concatenation of plosive and fricative. There is one affricate sound in
Arabic which is /z / .Voiced affricates /z/ can be modeled as the concatenation of the
stop /¥ and the fricative / ¥ [25].

Vibrant: The repetitive sounds in Arabic is the // which may repeat itself 2-5
times when used in speech.

Lateral sounds: Lateral sound is the sound that emerges from sides of the

mouth. The sideways sound in Arabic is /d/ .

15

2.6.3 Semivowels

The consonants and vowels are intermixed sometime to provide semi-consonant and
semi-vowel sounds. The group of sounds consisting of /& and /i¢/ are characterized
as semivowels because of their vowel-like nature. They are generally characterized
by a gliding transition in vocal tract area function between adjacent phonemes. Thus
the acoustic characteristics of these sounds are strongly influenced by the context in

which they occur. An example of the semivowel /¢ is shown in Figure 2.11 [25].

[mon 19
M/UMJ\M i]2

-2 | 1 i Ly
Frequency (kHz)

Figure 2.11 Articulatory position, waveform, and formant for semivowel / ¢/ [22].

2.7 Phonology

Speech signals are sequences of sounds arranged and governed by rules associated
with language. The scientific study of the language and the manner in which these
rules are used in human communication is referred to as linguistics. The science that
studies the characteristics of human sound production, especially for the description,
classifications, function, and transcription of speech, is called phonetics.

The phoneme is defined as the smallest possible analytical (functional and
configurable) sound unit capable of distinguishing one utterance from another. In
each language the phonemes are tied together to form a group configuration that has
common relations and identified structure. This configuration organizes sound-
segments relation, location, accent, frequency, interaction, flow, meaning,
homogeneity, contradiction, and indication etc.

A phoneme, by itself, is independent of its location in an utterance and the
other phonemes surrounding it. However, each phoneme has several ways
(allophones) to pronounce it depending on its location in speech.

A phoneme can be classified as either a continuant, or a non-continuant
sound. Continuant sounds are produced by a fixed (non-time-varying) vocal tract
configuration excited by the appropriate source. The class of continuant sounds

includes the vowels, the fricatives (both unvoiced and voiced), and the nasals. The

16

remaining sounds (diphthongs, semivowels, stops and affricates) are produced by a
changing vocal tract configuration. These are therefore classified as non-continuants

[26].

CHAPTER III
SPEECH PROCESSING AND ANALYSIS

3.1 Introduction

Speech processing and analysis can be done either in time domain or in frequency
domain. In time domain processing, we deal with the waveform of the speech signal
directly for estimating important features. In frequency domain, we deal with the
Foureir representation of the speech signal. Fourier representation often serves to
place in evidence certain properties of the signal that may be obscure or at least less

evident in the original signal.

3.2 Time Domain Processing and Analysis of Speech

Our goal in processing the speech signal is to obtain a more convenient or more
useful representation of the information carried by the speech signal. The required
precision of this representation is dictated by the particular information in the speech
signal that is to be preserved or, in some cases, made more prominent. For example,
the purpose of the digital processing may be to facilitate the determination of
whether a particular waveform corresponds to speech or not. In a similar but
somewhat more complicated vein, we may wish to make a 2-way classification as to
whether a section of the signal is voiced speech, or unvoiced speech. In such cases, a
representation which discards “irrelevant” information and places the desired
features clearly in evidence is to be preferred over a more detailed representation that
retains all the inherent information.

A sequence of samples (11025 samples/sec) representing a typical speech
signal (a3 (a0 il as) is shown in Figure 3.1. It is evident form this figure that
the properties of the speech signal change with time.

S.wav
1 T T T T T T T

05

0 p

Amplitude

05

_1] 1 1 1 1 L 1

Time, Secends

Figure 3.1 (a0 Oas)l & a) Speech waveform

17

18

For example, the excitation changes between voiced and unvoiced speech,
there is significant variation in the peak amplitude of the signal, and there is
considerable variation of the fundamental frequency within voiced regions when the
time scale is maximized. The fact that these variations are so evident in a waveform
plot suggests that simple time domain processing techniques should be capable of
providing useful representations of such signal features as excitation mode, pitch,
and possibly even vocal tract parameters such as formant frequencies.

The underlying assumption in most speech processing schemes is that the
properties of the speech signal change relatively slowly with time. This assumption
leads to a variety of “Short-Time” (ST) processing methods in which short segments
of the speech signal are isolated and processed as if they were short segments from a
sustained sound with fixed properties. This is repeated (usually periodically) as often
as desired. Often these short segments, which are sometimes called analysis frames,
overlap one another. The result of the processing on each frame may be either a
single number, or set of numbers. Therefore, such processing produces a new short-
time sequence which can serve as a representation of the speech signal.

Most of the ST processing techniques can be represented mathematically in
the form

0, = S Tlx(m)win-m) G.1)

m=—w

The speech signal x(m) (possibly after linear filtering to isolate a desired frequency
band) is subjected to a transformation, 7 [], which may be either linear or nonlinear.
The resulting sequence is then multiplied by a window sequence w(n-m) positioned
at a time corresponding to sample index n. The product is then summed over all

nonzero values [22].

3.3 Short Time Energy

The amplitude of the speech signal varies appreciably with time. In particular, the
amplitude of unvoiced segments is generally much lower than the amplitude of
voiced segmenté. The short-time energy of the speech signal provides a convenient
representation that reflects these amplitude variations. In general, we can define the

short-time energy as

19

@

E, = Y lxtmp(n=m)Y (32)
This expression can be written as
E, = 3 x(m)-h(n—m) (33)
where h
h(n) = w* (n) (3.4)

Equation (3.3) show that the signal x*(n) is filtered by a linear filter with impulse
response h(n) as given by Equation (3.4).

If we use the rectangular window which is

) 1 0<n<N-1 3.5)
n)= .
0 otherwise
the Short Time energy will be
E,= Y x’(m) (3.6)
m=n-N+1

That is, the short time energy at sample n is simply the sum of the squares of the N
samples n-N+1 through » [22].

Increasing the length N, simply decreases the bandwidth of the window. If N
is too small, i.e., on the order of a pitch period or less, E, will fluctuate very rapidly,
depending on the exact details of the waveform. If N is too large, i.e., on the order of
several pitch periods, E, will change very slowly and thus will not adequately reflect
the changing properties of the speech signal. Unfortunately, this implies that no
single value of N is entirely satisfactory, because the duration of a pitch period varies
form about 20 samples (at a 10 kHz sampling rate) for a high pitch female or a child,
up to 250 samples for a very low pitch male. A suitable practical choice for N is on
the order of 100-200 for a 10 kHz sampling rate (i.e., 10-20 ms duration).

Figure 3.2 shows the effects of varying the duration of the window on the

energy computation for the utterance (a3 (ea)l &l aspy spoken by a male speaker

using a Hamming window. It is readily seen that as N increases, the energy becomes

smoother.

20

ST-Energy Curve

5 T T] 1] T T)
o 4+ J
=
=
=4
=X i
(3]
| A AN |
O 1 1 1 i)
0 05 1 15 2 25 3 35 4
Time in seconds
(2) N=96
ST-Energy Curve
10 T T i T 1 T 1
o Hf |
=
=1
E=q
B 4r ’ i
st}
ol JL M -
0 I) 1 1 m !
0 05 1 15 2 25 3 35 4
Time in seconds
(b) N=220
ST-Energy Curve
20 T T T T T T 1
[s}]
.g_ 151+ -
=
g ot .
>
=
2 5t .
w
D .] i] 1 | 1 1
0 05 1 15 2 25 3 35 4

Time in seconds

(c)N=512

Figure 3.2 The effect of varying window length on energy computation

The major significance of E, is that it can help in distinguishing voiced
speech segments from unvoiced speech segments. As can be seen in Figure 3.2, the
values of E, for the unvoiced segments are significantly smaller than for voiced
segments. The energy function can also be used to locate approximately the time at

which voiced speech becomes unvoiced, and vice versa [22].

21

3.4 Short Time Autocorrelation Function

One of the most important of speech signal representations in terms of time domain
processing is the autocorrelation function.
The autocorrelation function of a discrete-time deterministic signal x(m) is

defined as

R(k)= Y x(m)x(m+k) (3.7)
The autocorrelation function representation of the signal is a convenient way of
displaying certain properties of the signal. If the signal is periodic with period P
samples, then it is easily shown that

R(k)=R(k+P) (3.8)
i.e., the autocorrelation function of a periodic signal is also periodic with the same

period. Other importaht properties of the autocorrelation function are:

1. Itis an even function, i.e., R(k) = R(-k).

2. It attains its maximum value at £ =0,, i.e.,

R(K)| < R(0) for all k.
3. The quantity R(0)is equal to the energy for deterministic signals or
the average power for random or periodic signals.
Thus, the autocorrelation function contains the energy as a special case.
Even more important is the convenient way in which periodicity is displayed.
If we consider Equation (3.8) together with properties (1) and (2), we see that for a
periodic signal of period P, the autocorrelation function attains a maximum at

samples 0, £ P, £2P,.... That is, regardless of the time origin of the signal, the

period can be estimated by finding the location of the first maximum in the
autocorrelation function. This properly makes the autocorrelation function an
attractive basis for estimating periodicities in all sorts of signals, including speech.
The short-time autocorrelation function can be defined as

R, (k)= > x(m)w(n—m)x(m+k)w(n—k—m) (3.9)
This equation can be interpreted as follows: first a segment of speech is selected by
multiplication by the window, then the deterministic autocorrelation definition
Equation (3.1) is applied to the windowed segment of speech.

It is easily verified that

22

R,(~k) = R,(K) (3.10)
If we define
h, (n) = w(myw(n+k) (3.11)

Then Equation (3.9) can be written as

ow

R, (k)= Y x(m)x(m —k)h,(n—m) (3.12)

m=-

Thus the value at time # of the k™ autocorrelation “lag” is obtained by filtering the

sequence x(n)x(n— k) with a filter with impulse response, h,(n) [22].

3.5 Voiced/Unvoiced Classification Using Autocorrelation Method

Voiced/Unvoiced classification is performed using autocorrelation function, through
extracting some feature from this function. In the beginning speech is low-pass
filtered with a 6-pole Butterworth filter having a cutoff frequency of 600 Hz as
suggested by Gold and Rébiner [6]. The autocorrelation function is computed for
each 51.2 ms using a rectangular window with 50% overlap.

Three features derived from the autocorrelation function are:

1. e, the rms energy of the segment.

2. p, the maximum value of the autocorrelation function over the pitch

range normalized by the value at zero lag.

(U'S)

r, the rms of the normalized autocorrelation function over the pitch
range.

These features are calculated as follows:

172
e =(RO) (3.13)
segment length
R(K)
=z 14
P="% ©) (3.14)

) 1 e RO) 5112
" Lm I %(R«))j } G4

where K is the index of the maximum peak (largest value) in the pitch range, /., and

I are the min term and the max term for the pitch range, respectively [3].

23

3.6 Pitch Detection Using the Autocorrelation Method

In pitch detection using autocorrelation function, the segment under analysis must be
a voiced segment, because the fundamental frequency (pitch) is valied only for
voiced speech. In the beginning, a 51.2 ms voiced speech segment is low-pass
filtered with a 6-pole Butterworth filter having a cutoff frequency of 600 Hz. Then
the short-time autocorrelation function is calculated for this segment.

A peak picking algorithm is applied to the autocorrelation function of the
segment. This algorithm starts by choosing the maximum peak (largest value) in the
pitch range of 50 to 333 Hz (3 to 20 ms). This peak has a corresponding lag (L). The
period corresponding to L is the first estimate of the pitch period.

As shown in Figure 3.3, the algorithm checks for peaks at one-half, one-third,
one-fourth, one-fifth, and one-sixth of the first estimate of the pitch period. If L/2
(rounded up) is within the pitch range, the maximum value of the autocorrelation
within (L/2) - 5 to (L/2) + 5 is located. If (L/2) - 5 is less than 3 ms, the lower limit of
the pitch range is chosen instead of (L/2) — 5. If this new peak is greater than one-half
of the old peak, the new corresponding lag replaces the old corresponding lag L. This
new L might not be exactly L/2 as shown in Figure 3.3. We now have a new L, which
presumably is corrected for the possibility of a pitch period doubling error. This test
is performed again to check for double doubling error, (fourfold errors). If the most
recent test fails, a similar test is performed for tripling errors of this new L. This test
checks for pitch period errors of sixfold. If the original test failed, the original L is
tested (in a similar manner) for tripling errors and errors of fivefold. With a sampling
rate of f;, the final value of L is used to calculate the pitch estimate F'by [3]:

A
L

F= (3.16)

24

Onginal L

Is
R(L/2)> RLy2
?

Is
RLID) > RLY2
?

Is
R(L3) > RLY2
?

Is
RL/3) > RILY2
?

Is
R(L/5) > R(Ly2
?

Figure 3.3 Decision process for the peak picking algorithm

3.7 Linear Prediction (LP) Analysis

One of the most important of types of time domain dependent processing is LP. In
the following there is a brief exposition of LP.

We can approximate the sampled speech waveform s(») by another sequence

s(n), by linearly predicting from the past p samples of s(n) as follows

| §(n)=zp:aks(n—k) (3.17)

The unknowns a,in (3.17), can be determined by minimizing the mean

squared error, E, between s(n) and §(n) over N samples of s(n) :

Ai\z:l [s(n) - §(n)] | (3.18)

n=0

=%§[s<n>—faks<n—k>]2 (3.19)
n=0 =

By setting 0E/da . to 0 for j =1,2,..., p, and simplifying, one obtains:
J

25

P
> ad, =x, j=12,...p (3.20)
k=1
where |
N-1
¢, = 5(n—j)s(n-k) (3.21)
X, =4 (3.22)

Once the coefficients a,are available, it is an easy matter to obtain

approximated properties of s(n) from those of §(n). One simply evaluates the
magnitude of the transfer function H(z) of the filter represented by the coefficients

a, , at N equally spaced samples along the unit circle in the z-plane:

H(z)=1/1 —iakz'k) (3.23)

where (3.23) is evaluated at z =r-exp[j(2zn/ N)] for n=0,,..,N -1, where r=1
[27]

3.8 Frequency Domain Processing and Analysis of Speech

The spectral representation reflects the time-varying properties of the speech
waveform. A useful definition of the Short-Time Fourier Transform (STFT) is

X, (€)= wn—m)x(m)e”™" (3.31)
The spectrum of speech would be the product of the frequency response of the vocal
tract system and the spectrum of the excitation. Thus, it is to be expected that the
spectrum of the output would reflect the properties of both the excitation and the
vocal tract frequency response [22].
In Equation (3.31), w(n-m) is a real “window” sequence which determines the

portion of the input signal that receives emphasis at a particular time index, .

26

Windowed Yoiced Speech Section

1 T T T T T
05+ i
(1]
-
=
2 0 .
£
4
05+ -
-1 ! ! L 1 1
0 5 10 15 20 25 30
Time, ms
(a)
. Spectrum
10 T T i T T
o " H i}
o 10 \'(\{\ (\f ! v) -
Ei / U a! Ul AN
= L i
: |
< 107 -
10'4 1 1 1 1 {
0 1000 2000 3000 4000 5000 6000

Frequency, Hz

(b)

Figure 3.4 Spectrum analysis for voiced speech using a 25.6 ms Hamming window

Figure 3.4 (a) shows a 25.6 ms windowed section of a voiced speech. Figure
3.4 (b) shows the resulting log magnitude spectrum. The periodicity of the signal is
clearly seen in part (a) (the time waveform) as well as in part (b) in which the
fundamental frequency and its harmonics show up as narrow peaks at equally spaced
frequencies in the STFT. Finally the spectrum shows a tendency to fall off at higher

frequencies.

3.9 Smoothed Spectrum Using Linear Prediction

The variance of the STFT is usually large. Smoother estimate of the Power Spectral
Density (PSD) an be obtained using parametric methods which assume certain
models for the speech signal [22].

Using LP analysis, a smooth spectral density can be obtained as

2
o

P (o) = - = (3.25)

1+Za, e
=1

where o, is the minimum mean squared error.

27

This will give a smooth spectrum that very well approximates the envelope of the
spectrum obtained by STFT.

In Figure 3.5, the dashed line represents a smoothed spectral density of a 25.6 ms
segment from the waveform in Figure 3.4(a). The smoothing is done using an LP

" model of order p=12.

Spectrum smooting
1D T ’ T 1]

10° WV'V) _

Il 1 1 1
0 1000 2000 3000 4000 5000 6000
Frequency, Hz

Amplitude

Figure 3.5 Smoothed spectrum

3.10 Spectrogram

One of the earliest embodiments of the ST Fourier representation was the sound
spectrogram, a device that has become an essential tool in almost every phase of
speech research. In this device, a short speech utterance repeatedly modulates a
variable frequency oscillator. The modulated signal is input to a bandpass filter. The
average energy in the output of the bandpass filter at a given time and frequency is a
crude measure of the time dependent Fourier transform. This energy is recorded by
an ingenious electromechanical system on teledeltos paper. The result is called a
spectrogram [22].

A spectrogram is a two dimensional representation of the time dependent
spectrum in which the verticél dimension represents frequency and the horizontal
dimension represents time. The spectrum magnitude is represented by the darkness
of the marking on the paper. If the bandpass filter has a wide bandwidth (e.g. 300
Hz), the spectrogram displays good temporal resolution and poor frequency
resolution. On the other hand, if the bandpass filter has a narrow bandwidth (e.g. 45
Hz), the spectrogram has a good frequency resolution and a poor time resolution.

Examples are shown in Figure 3.6 and Figure 3.7.

28

Spectrogram

5000
4000
&' 3000
a
2 2000
=3
“ 1000

0 0.5 1 15 2 25 3 35
Time, Seconds

Figure 3.6 Wideband spectrogram (Window width; N=95)

Figure 3.6 shows a wideband spectrogram of the utterance " ps I Oes I ih oy ™,
This example illustrates a number of characteristic features of wideband time
dependent spectra. The spectrogram clearly displays the variation of the formant
frequencies with time. Another interesting feature of the wideband spectrogram is the
vertical striations that appear in regions of voiced speech. These are due to the fact
that the impulse response of the analyzing filter (i.e., the spectrum analysis window)
duration is less than the pitch period. For unvoiced speech, which is not, of course,
periodic, the vertical striations do not appear and the spectral pattern is much more

ragged.

Spectrogram

guency, Hz
- N o) e 5]
=2 [wn]] [[
o o o9 2 o
o o o | s R e
T T I { t

0 05 1 15 2 25 3 35
Time, Seconds

Figure 3.7 Narrowband spectrogram (Window width; N=256)

Figure 3.7 is a narrow band spectrogram of the same utterance. In this case,
the bandwidth of the filter is such that individual harmonics are resolved in voiced
regions. Unvoiced regions are distinguished by a lack of periodicity in the frequency
dimension.

The wideband and the narrowband spectrograms display a great deal of

information about the properties of a speech utterance. Indeed, when the apparatus

29

for displaying such ST Fourier representations first became available, it was hoped
that such a display could provide a new “language” for communication with the deaf.
In the years since this early work, many speech researchers have made measurements
by hand on spectrograms to determine speech parameters such as formant

frequencies and the pitch [22].

3.11 Formant Extraction Using Linear Prediction Spectra

The speech waveform can be modeled as the response of a resonator (the vocal tract)
to a series of pulses (quasi-periodic glottal pulses during voiced sounds, or noise
generated at a constriction during unvoiced sounds). The resonances of the vocal
tract are called formants, and they are manifested in the spectral domain by
maximum energy at the resonant frequencies.

The frequencies at which the formants occur are primarily dependent upon
the shape of the vocal tract, which is determined by the positions of the articulators
(tongue, lips, jaw, etc.). In continuous speech, the formant frequencies vary in time

as the articulators change position.

3.11.1 Peaks vs. Poles

Clearly, an obvious method for extracting formants from LP would be to solve for
the poles of the filter by setting the denominator in (3.23) to zero and solving for the
roots of the resulting pth order real polynomial in z. Some or none of the roots would
be real, and the rest would be complex conjugate pole pairs which might or might not
be formants. Out of those pole pairs, one would have to select three on the basis of
frequency location, sufficiently narrow bandwidth, and some kind of formant
continuity criterion, to be the first three formants.

Another technique, requiring much less computation, would be to simply pick
the first three peaks in the spectrum and call those the first three formants, making
the assumption that a pole strong enough to show up as peak is necessarily a formant.
Such a method works very well most of the time, but mistakes will occur during the
following situations.

1) Often two poles show up as only one peak because they are close together in
frequency.
2) Occasionally a pole due to frequency shaping will appear as a small peak,

which would be incorrectly interpreted as a formant.

30

It was decided to use peak-picking rather than root extraction, and to develop

an algorithm to solve cases 1) and 2) above. [2]

3.11.2 Algorithm steps
After speech classification voiced frames are used only. At each frame one begins
with four vacant formant slots; S, S, Sz and Ss, four estimates for the frequencies of
the formants; EST;, EST,, ESTs, EST,, and one, two, three, or four peaks. The task is
to fill the slots with the peaks, based on the estimate frequencies, in such a way that
spurious peaks and missing peaks can be recognized as such and dealt with. (No
special attempt is made to fill the F, slot. It only exists to prevent Fs, when it exists,
from competing with F3 for the F3 slot).

Steps of the peak mapping algorithm are explained below, and Figure 3.8
shows the flowchart of the peak mapping algorithm.

Fetch Peaks
1. Find the frequenciesband amplitude of up to four peaks in the region from 150
to 3400 Hz for the segment spectrum obtained using LP with r=1.
Fill Slots ‘
2. Fill each formant slot S; i = 1 to 4, with the best candidate peak P;, where the
peak P; closest in frequency to estimate EST; goes into slot S;.
Deal with Unassigned Peaks
3. If there are no unassigned peaks P, go to 8.
4. Otherwise, try to fill empty slots with peaks not assigned in 2; If there is a
peak P-4 unassigned, and an S;-; unfilled, fill the slot with the peak and go to
step 8.
5. If there is a peak P,-, unassigned, but slot Si= is already filled, check the
amplitude of P;: If amp (P,) < ¥ amp (peak already assigned to S) throw Py
away and go to 8. Otherwise, go to 6.
6. If Py is still unassigned, but S;—4+; is unfilled, move the peak in Sj= t0 Si=x+1,
and put Py in S;. Go to 8.
7. If P, is still unassigned, but S;-.; is unfilled, move the peak in Si— t0 Si=x.1,
and put P, in S;. Go to Step 8. If 4, 5, and 6 all fail, throw P, away.

31

Deal with Unfilled Slots

8. IfSi, S, and S; are all filled, go to 13. (F4 may or may not be filled).

9. Otherwise; Recompute the spectrum on a circle with radius less than one
(r=0.98) to eﬁhance the formants. Go to 1.

10. If the spectrum fails to yield a peak to fill the empty slot then step 1-9 are
repeated again with » = r — 0.004. The radius is shrunk repeatedly in this
manner until a peak is finally found or until » = 0.88; at which point it is
assumed that no peak exists to fill the empty slot.

11. Finally, whether or not enhancement has succeeded, the amplitude of the
peaks are reset to the amplitudes in the original spectrum.

12. If the empty slot was S;, and failed to yield a peak, then the peak in Ss is
moved down to S3, assuming that F3 was mistakenly called Fi.

Record Answers
13. Accept formant slot contents as answers, and if a slot is empty, keep the

original formant estimate for that formant [2].

32

v

Fitch Peaks |

v

Eill Slots |

r=r-0.004
Recompute
Spectrum with #

A

i

No une ssigned

Peaks g
(P~=0)
S=F; >
Sjr1=8; >
SF,
5 1=5; »
S=5;
Yes
No
Record Answers

SBST;

Figure 3.8 Peak mapping algorithm

CHAPTER IV
GRAPHICAL USER INTERFACE (GUI)

4.1 Introduction

Guide extends MATLAB’s support for rapid coding for building GUIs. Guide is a set
of MATLAB tools designed to make building GUIs easier and faster. Just as writing
math in MATLAB is much like writing it on paper, building a GUI with Guide is
much like drawing one on paper. As a result, one can lay out a complex graphical
tool in minutes. Once buttons and plots are in place, the Guide Callback Editor sets

up the MATLAB code that gets executed when a particular button is pressed.

4.2 Design Principles

Designing means everything can be done before writing the code that results in a
final working GUI. Most important principles in design are Simplicity, Consistency,

and Familiarity.

¢ Simplicity:

A simple GUI has a clean look and a sense of unity. It’s very easy to add
functionality to the GUI, but if that functionality really doesn’t belong, it should be
taken out. Avoid screen clutter, and only present users with choices that advance
them toward the completion of the task. Once we let ourself remove a piece of the
GUI that doesn’t absolutely need to be there, we may find that we can eliminate a lot

of supporting machinery that no longer has any purpose.

o Consistency:
The further users are from their base of experience, the more likely they are to feel
disoriented. Anything we can do to keep the user from feeling confused is

extraordinarily important.
o Familiarity:

If the GUI is in some sense familiar to its users, then they can generally learn how to

use it more quickly. This is the value of basing the GUI on a good metaphof. The

33

34

users might not know how to do a given task, but the metaphor helps them make a

good guess. Familiarity draws people into the GUI and makes them feel comfortable.

4.3 The Dynamic Interface

Actions on the GUI should be: Immediate, Continuous, and Reversible. With respect
to immediacy and continuity, calculation time is the most important consideration.
Calculation and display the result should be made instantly. But if calculation time is
significant, we may be better off using a button to invoke the action. Finally,
reversibility is most often embodied by the Undo menu. Undoing is sometimes
difficult to implement, but it’s always appreciated by users. A well-built undo

capability encourages experimentation and a sense of comfort in working with the
GUL

4

4.4 Design Process

It’s helpful to think about the GUI creation process as breaking into a design phase
and an implementation phase. The fact presented below is complete the design of the
GUI before the beginning of implementing the GUL

Coding must be afier designing. If we start working on the implementation
too soon, we tend to converge much slower on a final design.

Of course the design may change once we start coding, and there may well be
design decisions that we can’t properly make until we have written some code. Still,
take the design part just as far as we can on paper, because we are guaranteed to save
ourselves a lot of time.

Start with the ideal. Don’t make compromises too soon. The best final
designs grow form an idealized initial vision.

The ideal design is something that exists in our head after we have spent a
long time thinking about the task and the user. This design might be expensive in
terms of development effort or computing power required. But for whatever reason,
it is the best way to approach the task. Think of it as a three dimensional shape that
must now be projected down into the two dimensions of the final implementation. If
we start out with the merely achievable, the final result will be half-hearted. If we
start with the ideal, it is often surprising what we can make the technology do for us.

35

Test the GUI on Paper. Drawing and testing the GUI on paper keeps us and
any testers from over focusing on the detailed aspects of the GUIL

Early on in the design process, there is no point in playing with font sizes and
button colors. What matters is the overall behavior and appearance of the GUL Paper
prototyping is a good exercise for keeping things in perspective. The idea is to build
the entire interface out of paper and try it out. Since there is no code involved, we
play the role of the computer while a cooperative user sitting across from us
performs a task. It is an excellent way to see if the GUI does what we (and the user)
want it to do.

Paper prototyping tests the thoroughness of the design and can resolve
disagreements about tough design questions that might otherwise be intractable.

By the time we are ready to start writing code, we should have a complete
diagram or set of diagrams of the GUI (the layout) and an exact description of what
functionality is associated with each part of the GUI (the callbacks). Actually, the
term “write the code” is somewhat misleading now that Guide is available to make

the job easier.

4.5 Handle Graphics

All objects appears in a MATLAB figure is an example of Handle Graphics, because
every object on the screen has a unique identifier, called a handle, that allows the
designer to go back and modify the object at any time. Figure 4.1 is a diagram of the
Handle Graphics object hierarchy, that shows all the categories of object types in
MATLAB.

Root
I
Figure
i I |

Uicontrol Axes Uimenu

|
| I I I I I
Image Lline Patch Surface Text Light

Figure 4.1 Handle graphics object hierocracy

36

4.6 Speech Analysis GUI

sy

o
(4]
T

Ampltude, m volt
o

o
th
T
1

[
iy

0 0.5 1 1.5 2 25 3 35 4
Time, Seconds
‘ Spectrogram
£ 4000
)
o
& 2000
D
w

0.5 1 15 2 25 3 35

Time, Seconds

o

Figure 4.2 Speech Analysis GUI
Figure 4.2 shows Speech Analysis GUL It consists of a Figure object which is the
parent of all the menus and axes objects. Under some menus there are submenus and
then sub-submenus where the parent of submenu is menu. Each object has a certain
handle and properties where through its handle, we can get and set any property
belong to this object. In an other word we can control this object and put it in the way

which can help the user.

4.7 Basic Idea

By using struct keyword we can create a structure array with specified fields and
values. I define my structure as global in scope. This is because, ordinarily, each
MATLAB function, defined by an m-file has its own local variables, which are
separate from those of other functions and from those of the base workspace.
However, if several functions, and the base workspace, all declare a particular name
as global, they all share a single copy of that variable. Any assignment to that
variable, in any function is available to the functions declaring it global. I call my

structure g and all variables are involved in g.

37

g
Sienal prermelenns
tgna Figure ! Options
Data Voiced 5
Menu Axes1Handle AspectRation SubMenu NumSubMenu SSubMenu
q . . Axes?Handle
Margin Handle Dimensions NumMenu NumSSubMenu
i Name Handle Name) Handle P
Name Handle SubMenu Function Parent Function arent
Function Parent Enable
(a)
Options
Energy Spectrum Formants Specgram Pitch VUVoiced
WindowType] Overlab FiiLength Sealanath | ‘ | I
" " engtl egleng ‘7 ' l
WindowWidth | .
LpcCoffNum WinType WinWidth Ovcrll;'ftSlze FftSize
WinType P FiltCoff
' FftLength |Formantend
CoffMum Formantstart Seglength PitchEnd NumFP SegLength
PitchStart FilterType FiltCoutoff WinType
eParameter | rParameter PitchEnd l NumFP Seglength ‘

pParameter PitchStart FilterType FiltCoutoff WinType

(b)

Figure 4.3 The g structure tree

Global structure g has three basic variables which are Signal, Figure and
Options. Signal has all variables belong to the speech we want to analyze. Figure
contains all objects appear on the screen, each object has their properties as shown
in Figure 3.4 (a). Options include all analysis methods like spectrogram, Energy,
Formants, Pitch, Voiced/Unvoiced and Spectrum. Each of these analysis has it’s

own variables like in Energy, it has Window Type, Window Width and overlap

38

. global variable as shown in Figure 4.3 (b). Some of these variables has a default
value, Variables setting with default values is performed in the beginning of

program.

4.8 GUI code

In general any code should be clear, understandable, strong and changeable without
problem arises. Using the Guide control panel to construct GUI is useful. The
disadvantage of Guide is the-layout of graphic objects is too long, mixed, weak and
not suitable for tough GUIL

Speech Analysis GUI code is short, clear, strong, understandable. It has the
ability to add a new analysis method without big effort or many changes. Also the

addition of a new menu, submenu and sub-submenu can be done smoothly.

CHAPTER V
SPEECH ANALYSIS SOFTWARE

5.1 Introduction
Speech analysis software consists of the main window which have nine menus and

two axes. The input is a speech signal using pieces of Personal Computer (PC)
hardware such as a microphone and a sound card. The recorded speech is processed
then the output is shown on the two axes and heard through the speaker. Figure 5.1

shows speech analysis software with outputs on axes.

T 1
-1 - : .
‘ 0 1 2 3 4
Time, Seconds
Spectrogram
£ 4000
)
E 2000
0
0 05 1 1.5 2 25 3 3.5
Time, Seconds

Figure 5.1 Speech Analysis software

5.2 File menu
With this menu the user start analysis, where in the beginning all menus are off except

file menu. File menu consists of three submenus; Open to select a recorded sound
wave as shown in Figure 5.2, New to record a new sound wave, and finally Exiz to

close speech analysis software.

39

40

; Selec the sound wave fil

Figure 5.2 File menu

After file selection the waveform of the selected file appears on the top axes and all
menus are enabled on.

5.3 Spectrogram menu
Spectrogram menu has two submenus, Spectrogram and Color. Using Spectrogram

submenu the spectrogram of the sound wave is shown on the bottom axes. Color
gives you the ability to change the colormap of the spectrogram. Under this submenu

there are five sub-submenus, gray, hot, hsv, cool, and jet as shown in Figure 5.3.

Time, Seconds
Spectrogram

4
]
i
Q

2000

Frequency, Hz

a 0.5 1 15 2 25 3 3.5

Time, Seconds

Figure 5.3 Spectrogram menu

41

54 V/UV menu
V/UV menu makes voiced and unvoiced classification. On the top axes voiced

segments are represented by red color where unvoiced segments are represented by

black as shown in Figure 5.4.

[/ Speech Analysis‘
M

Red part represent the woiced speech

1 T T T

- f 0 '
‘1§ -1 L . .

D 1 2 3 4
] Time in second

‘l S$T-Energy Curve

10 T T

Energy Amplitude
[4)]

0 1 2 3 4

i Time in seconds

Figure 5.4 V/UV menu

5.5 Pitch menu
Pitch menu has three submenus, Averaged Pitch, Single Pitch, and Pitch Curve.

Averaged Pitch gives the user the ability to select any part of the sound wave,
Averaged Pitch divide this part to ST segments then computes the pitch for each of
them and then shows the user the average of this computation. Single pitch submenu
computes the pitch for a single short segment that is selected by the user. The
autocorrelation function appears on the bottom axes as shown in Figure 5.5. Pitch
Curve submenu computes the pitch over the whole sound wave, then the pitch curve

appears on the bottom axes as shown in Figure 5.6.

42

Amplitude

100 200 300 400 500 600

h
o

Figure 5.5 Pitch menu

i % D 4
&
-1 L L L
0 1 2 3 4
Time, Seconds
Pitch Curve
300 3 ' L= T a a ¥
o
- #200¢ ’
- AR P L
£ 100} 1
e o I] - & e)
0 . L :
0 1 2 3 4
: Time in second

Figure 5.6 Pitch curve

43

5.6 Formants menu
Formants menu has two submenus, Formants and Formants History. Formants

submenu computes the first three formants of any ST segment in the sound waveform
as shown in Figure 5.7. Formants History computes the formant for the whole sound

wave then plots all formants on the spectrogram as shown in Figure 5.8.

‘Speech Analpsis

S.0av

Amplitude

201 1

0 100 200 300 400 500 600

Figure 5.7 Formants menu

44

‘Speech Analysis v

| i, _
3
1 : . .
0 1 2 3 4

Time, Seconds

Frequency, Hz

0 05 1 15 2 25 3 35

Time, Seconds

Figure 5.8 Formants History

5.7 Energy menu
Energy menu computes ST-Energy of the whole signal, and shows the user the energy

profile on the bottom axes as shown in Figure 5.9.

R

| [E—— = :

-]

% 4
B
O - - -
i 0 1 2 3 4
' Time. Secands
; ST-Enargy Cunva
10 T T T
k-]

g

£ 5]

0 A Sl
0 1 2 3 4

Time in 3ecands

Figure 5.9 Energy menu

45

5.8 Spectrum menu
Spectrum menu computes the ST Fourier transform then computes spectrum

smoothing using LP for any selected ST segment.

.ECh IR

s.wav

Amplitude

[
—_

0 1 2 3 4
Time, Seconds
Spectrum smooting

Amplitude

0 1000 2000 3000 4000 5000 6000

Frequency, Hz

Figure 5.10 Spectrum menu

5.9 Tool menu

Tool menu has two submenus Reset Defaults and Options. Reset Defaults to reset all
analysis options to default values. Option has five sub-submenus as shown in Figure
5.11.
The five sub-submenus are explained below:
Spectrogram, through which the user can set the following spectrogram options:

1. Window length in points

2. Overlap in points

3. FFT length in points

4. Window type
Figure 5.12 shows Spectrogram Options.

46

Time, Seconds
Spectrum smaoting

10 [T T T ¥ T

Amplitude

a 1000 2000 3000 4000 5000 BOOO

Frequency, Hz

Figure 5.11 Tool menu

/' Spectrogram Options

| Window Longth Overlab ~ FFT lenath Fremphoses — Window Tnpe

. ey
I I | I Ihammlng ﬂ

Figure 5.12 Spectrogram Options

Energy, the user can set the following energy options:
1. Window length in points
2. Opverlap in points
3. Window type

Figure 5.13 shows Energy Options.

47

b » Energy Options ‘

Window Length — Overdab Window Tspe

l I l hamming

Figure 5.13 Energy Options

Formants, the user can set the following formants options:
1. Number of coefficients
2. FFT length in points
3. Formants start in Hz
4. Formants end in Hz
5. Segment length in ms

Figure 5.14 shows Formants Options.

/ Formants Options

Figure 5.14 Formants Options

Pitch, the user can set the following pitch options:
1. Pitch start in Hz

Pitch end in Hz

Segment length in ms

Number of filter poles

Filter cutoff frequency

Window overlap

Filter type

® N AU A wDN

Window type

48

Figure 5.15 shows Pitch Options.

Fifch Stanf
izl

Fifch End
fwzl

Loamant
Langth twzf

Mo of Fiter
Falex

Luttalf
Fragquancy

Windsss
Lveviap

Fiftar Fape

Windiasr
Tepe

Figure 5.15 Pitch Options

Spectrum, the user can set the following spectrum options:
1. Number of LP coefficients
2. FFT length in points
3. Segment length in ms
4. Window type
Figure 5.16 shows Spectrum Options.

| - Spectium Optio

Numbar of LFC FFF Sagmerif Windoawr
Lofcromts L enalfy L enath Fopez

—
hamming ¥

Figure 5.16 Spectrum Options

49

V/Unvoiced, the user can set the following options:
1. e parameter

p parameter

I parameter

Pitch start in Hz

Pitch end in Hz

Segment length in ms

Number of filter poles

Filter cutoff frequency

T A ol

Window overlap

|
e

Filter type
11. Window type
Figure 5.17 shows V/UVoiced Options.

e
Farameter

-]
Faramefer

r
Farameter

Pitch Start
fmz}

Fitch End
fmzf
Segament
L ength fmzf

No of Fiffer
Foles

Lurttolf
Frogueecy

P
Dyvenfap

[ARRNRANR

Fifter Fope butter o

Window
Fewpe

—
!

hamming

Figure 5.17 V/UVoiced Options
In all the above options the user can implement the setting by pressing Apply button.

50

5.10 Play menu

Play menu consists of three submenus, All Data, Voiced Segments and Data Segment
as shown in Figure 5.18. All Data submenu sounds the whole waveform, Voiced
Segments sounds voiced segments only, and Data Segment submenu gives the user the

ability to select a part from the waveform then sounds the selected part.

- Speech Analysis

-1 ‘ ' . : .
0 0.5 1 16 2 25 3 35 4

Time, Seconds

ST-Energy Curve

M/Mm 3-

5 4

Energy Amplitude
]

o
=

Time in seconds

Figure 5.18 Play menu

51

5.11 Some application of Speech Analysis Software

Speech and acoustic analysis have increased use in the evaluation of patients with

various voice disorders.

V/UYV application:

V/UV classification can be used by speech therapists to evaluate patient voice. Some
people have voice disorder, for instant they produce voiced sounds as unvoiced or
vise versa. The patient can record a phrase, then the speech pathologist can determine
the sound which is devoiced or made voiced through seeing the colors that represent
voiced and unvoiced.

A patient of hyper nasality for example had a problem in producing the voiced
counterpart of certain sounds such as t, k. By watching this classification speech
Language Pathologist (SLP) can tell the patient where he should see red color for
voiced sounds. SLP can record his own speech to compare and see where he should

see red color for voiced sounds.

Pitch application:
Some patients have voice disorders related to pitch. Pitch means how the person
speech sounds. If the patient is an adult and still not develop an adult pitch, his speech
would sound as a child’s speech, “The perceptual effect is a boy’s voice in a man’s
body”.

SLP can use pitch to determine habitual pitch; the pitch that patient actually
uses. Then it can be used to reach the optimal pitch; the pitch that is suitable for the
patient age. The patient tries to change his pitch and watch the change on the PC.

Energy application:

Some patients have low voices, so if they record they will have low energy curve.
After giving these patients certain exercises to increase their sound energy, they can
use energy curve to feel the difference. However SLP can use energy curve as a

training tool for patient to increase his energy.

CHAPTER VI

CONCLUSION & FUTURE WORK

In this thesis speech production is explained, from this we see some of what Allah

subhanah give us in this field. Speech processing and analysis; algorithms and

mathematical background is also explained.

A complete speech processing and analysis software is generated. This

software based on MATLAB, and has the following analysis: Energy, Spectrogram,

Pitch, Formants, Voiced/Unvoiced classification, and Spectrum. Each of these

analysis has it’s own options and parameters to change and control the analyzed

operation.

Future work suggestions are:

a.

e ©

5@ e o

Converting the whole speech analysis software to C++ language to
make a stand alone software.

Adding others methods to extract the same feature. Like in pitch
detection, we used Autocorrelation method, In the future we can add
Cepstrum and AMDF methods for pitch extracting.

Classify the speech to voiced, unvoiced and silence segments.

Adding the continuity of the pitch curve to the Pitch analysis.

Adding the continuity of the formant history to the Formant analysis.
Adding short time Cepstrogram analysis

Using Wavelet transform as an analysis method.

Combining a microphone and a recorder with the speech analysis

software.

52

1)
2)

3)

4)

5)

6)

7)

8)

9

REFERENCES

Adel M. Abu-Shaar, Private Communication.

S. S. McCAnndless, “An Algorithm for Automatic Formant Extraction Using
Linear Prediction Spectra,” IEEE Trans. On Acoust., Speech, and Signal
Process., vol. ASSP-22, pp. 135-141, Apr. 1974.(1)

D. A. Krubsack and R. J. Niederjohn, “An Autocorrelation Pitch Detector and
Voicing Decision with Confidence Measures Developed for Noise-Corrupted
Speech,” IEEE Trans. On Signal process., vol. 39, no. 2, Fep. 1991.(4)

L. R. Rabiner, M. J. Cheng, A. E. Rosenberg and C. A. Gonegal, “A
Comparative Performance Study of Several Pitch Detection Algorithms,”
IEEE Trans. Acoust., Speech, and Signal Process., vol. ASSP-24, pp. 399-417,
Oct. 1976.

M. M. Sondhi, “New methods of pitch extraction,” IEEE Trans. Audio
Electroacoust., vol. AU-16, pp. 262-266, June 1968.

B. Gold and L. Rabiner, “Parallel Processing Techniques for Estimating Pitch
Periods of Speech in the Time Domain,” J. Acoust. Soc. Am., vol. 46, pp. 442-
448, Aug. 1969.

M. J. Ross, H. L. Shaffer, A. Cohen, R. Freudberg, and H. Manley, “ Average
magnitude difference function pitch extractor,” JEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-22, pp. 353-362, Oct. 1974

M. Noll, “Pitch determination of human speech by the harmonic product
spectrum, the harmonic sum spectrum, and a maximum likelihood estimate,”
in Proc. Symp. Comput. Processing Commun., Apr. 1969, pp. 779-797

M. Lahat, R. J. Niederjohn, and D. A. Krubsack, “A spectral autocorrelation
method for measurement of the fundamental frequency of noise-corrupted
speech,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp.
741-750, June 1987.

10) M. Noll, “Cepstrum pitch determination.” J. Acoust. Soc. Amer., vol. 47, pp.

293-309, Feb. 1967.

11)J. D. Markel, “The SIFT algorithm for fundamental frequency estimation,”

IEEE Trans. Audio Electroacoust., vol. AU-20, pp. 367-377,.Dec. 1972.

53

12)E. N. Pinson, “Pitch-Synchronous Time-Domain Estimation of Formant
Frequencies and Bandwidths,” J. Acoust. Soc. Am., vol. 35, pp. 1264-1273,
Aug. 1963.

13)R. W. Schefer, L. R. Rabiner, “System for Automatic Formant Analysis of
Voiced Speech,” J. Acoust. Soc. Am., vol. 47, pp. 634-648, Feb. 1970.

14)F. Itakura, S. Saito, “A Stiatistical Method for Estimation of Speech Spectral
Density and Formant Frequencies,” Electron. And Commun., vol. 53-A, pp.
36-43, 1970.

15)L. J. Siegel, “A procedure for using pattern classification techniques to obtain
a voiced/unvoiced classifier,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-27, pp. 83-89, Feb. 1979.

16)H. Kobatake, “Op:[imization of voiced/unvoiced decisions in nonstationary
noise environmenté,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-35, pp. 9-18, Jan. 1987.

17)B. S. Atal and L. R. Rabinar, “A pamrern recognition approach to
voiced/unvoiced/silence classification with applications to speech
recognition,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-24,
pp. 201-212, June 1976.

18)C. K. Un and H. H. Lee, “Voced/unvoiced/silence discrimination of speech by
delta modulation,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-28, pp. 398-407. Aug. 1980.

19) L. J. Siegel, A. C. Bessey, “Voiced/unvoiced/mixed excitation classification of
speech,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, pp.
451-460, June 1982. | ,

20)B. S. Atal, “Effectiveness of Linear Prediction Characteristics of the Speech
Wave for Automatic Speaker Identification and Verification,” J. Acoust. Soc.
Am., vol. 55, pp. 1304-1312, June 1974.

21) A. A. Almusleh, Speech Recognition. Master Thesis, KAAU, 1999.

22)L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1978.

23)J. L. Flanagan, “Automatic Extraction of Formant Frequencies from
Continuous Speech,” J. Acoust. Soc. Am., vol. 28, pp. 110-118, Jan. 1956.

24)S. M. Kay, Modern Spectral Estimation. Prentice-Hall, Englewood Cliffs,
1988. -

54

25)J. R. Deller, J. G. Proakis and J. H. L. Hansen, Discrete-Time Processing of
Speech Signals. Macmillan Publishing Company, New York, 1993.

26)R. W. Schafer and L. R. Rabiner, “System for Automatic Formant Analysis of
Voiced Speech,” J. Acoust. Soc. Am., vol. 47, pp 634-648, Fep. 1970.

27)]. Ross, L Shaffer, R. Freudberg and H. J. Manley, “Average Magnitude
Difference Function Pitch Extractor,” IEEE Trans. Acoust., Speech, and L. R.
Rabiner, “On the Use of Autocorrelation Analysis for Pitch Detection,” JEEE
Trans. On Acoust., Speech, and Signal Process., vol. ASSP-25, no. 1, Feb.
1977.

28) A. M. Noll “Cepstrum Pitch Determination,” J. Acoust. Soc. Am., vol. 41, pp.
293-309, Feb. 1967.

29)B. S. Atal and S. L. Hanauer, “Speech Analysis and Synthesis by Linear
Prediction of the Speech Wave,” J. Acoust. Soc. Am., vol. 50, pp. 637-655,
Aug. 1971.
bl SaN st g oIS il 4y gl < gl s g ale (Y44Y) plaae ¢opall 5 (Ve

55

APPINDEX A

Thesis Matlab Programs

Basic Definitions

function Def menuNew

% This function contains a structure array which has a full
information

% about applied functions and operations on the speech signal and
Objects

% of Graphical user interface.

global g;

g=struct('signal',[],'Figure',[],'Options',[],'Defaults',[]);

%g.sinal
g.signal=struct(‘Data',[],'voiced',[],'fs',[]);

%$g.Figure

g.Figure =
struct('Menu',[],'SubMenu',[],'SSubMenu',[],'Handle',[],'AspectRatio
',[],'Dimensions',[],'Margin',[],'NumMenu',[],'NumSubMenu',[],'NumSS
ubMenu‘,[],'AxeslHandle',[],'AxesZHandle',[]);

g.Figure.Menu=struct('Name',[],'Function',[],'Handle',[],'Parent',[]
,'SubMenu', [],'Enable’', []);

%g. SubMenu
g.Figure.SubMenu=struct('Name',[],'Function',[],'Handle',[],'Parent'
L1) 3

%g.SSubMenu
g.Figure.SSubMenu=struct('Name‘,[],'Function',[],'Handle‘,[],'Parent
L1

Q
-]

%$g.Options

g.Options =
struct('Specgram',[],'Energy',[],'Formants',[],'Pitch',[],'VUVoiced'
,[1,'Spectrum’, [])

g.Options. Specgram =
struct('WindowType',[],'WindowWidth',[],‘Overlap',[],'FftSize',[]','
FilterCoffecients',[], 'DefaultColormap’', []):

g.Options.Energy =
struct('WindowType',[],'WindowWidth',[],‘Overlap',[]);

g.Options.Formants =

struct('CofficientsNumber',[],'FftLength',[],'FormantsStart',[],'For
mantsEnd', [], 'SegmentLength',[]);

56

57

g.Options.Pitch =
struct ('PitchStart',[], 'PitchEnd',[],'FilterType',[], 'NumFiltPoles’,
[]1, 'FilterCuttoffFrequency', [], 'SegmentlLength', [], 'WindowType',[]);

g.Options.Spectrum =
struct ('LpcCoffNum', [], 'FftLength',[], 'WindowType', [], 'SegmentlLength
L)

g.Options.VUVoiced =
struct('eParameter',[], 'pParameter', [], 'rParameter', [], 'PitchStart’,
[1,'PitchEnd',[],'FilterType',[], 'NumFiltPoles', [], 'FilterCuttoffFre
quency',[], 'SegmentLength', [], 'WindowType',[])

%

SetDefaul tsNew

Defaults Setting

function SetDefaultsNew
global g

$Spectrogram Options

g.Options.Specgram.WindowType = 'hamming’;
g.Options.Specgram.WindowWidth = 128;
g.Options.Specgram.Overlap = 0.5;
g.Options.Specgram.FftSize = 1024;
g.Options. Specgram.FilterCoffecients = 0.9;
g.Options.Specgram.DefaultColormap = 'gray’';
%

$Energy Options
g.Options.Energy.WindowType = 'hamming';
g.Options.Energy.WindowWidth = 220;
g.Options.Energy.Overlap = 0.5;

o

$Formants Options
.Options.Formants.CofficientsNumber = 14;
.Options.Formants.FftLength = 1024;
.Options.Formants.FormantsStart = 150;
.Options.Formants.FormantsEnd = 3400;
.Options.Formants.SegmentLength = 220;

QQuuuuaay

o0

$Pitch Options

.Options.Pitch.PitchStart = 0.0035;
.Options.Pitch.PitchEnd = 0.02;
.Options.Pitch.FilterType = 'butter’';

.Options.Pitch.NumFiltPoles = 6;
.Options.Pitch.FilterCuttoffFrequency = 600;
.Options.Pitch.SegmentLength = 0.0512;
.Options.Pitch.WindowType = 'hamming’';
.Options.Pitch.Overlap = 0.5;

e JTo Ve yTo e e e el

o0

58

$Spectrum Options
‘g.Options.Spectrum.CofficientsNumber = 14;
g.Options.Spectrum.FftLength = 1024;
g.Options.Spectrum.WindowType = 'hamming';
g.Options. Spectrum.SegmentLength = 0.0256;
%

$VUVoiced Options
g.Options.VUVoiced.eParameter = 0.02;
g.Options.VUVoiced.pParameter = 0.285;
g.Options.VUVoiced.rParameter = 0.1425;
g.Options.VUVoiced.PitchStart = 0.0035;
g.Options.VUVoiced.PitchEnd = 0.02;
g.Options.VUVoiced.FilterType = 'butter';
g.Options.VUVoiced.NumFiltPoles = 6;
g.Options.VUVoiced.FilterCuttoffFrequency = 600;
g.Options.VUVoiced. SegmentLength = 0.0256;
g.Options.VUVoiced.WindowType = 'hamming';
g.Options.VUVoiced.Overlap = 0.5;

o0

Interface Object and Analysis Initialization

function FigureHandle int_menu ()

% This is the machine-generated representation of a Handle Graphics
object

% and its children.
objects

% are re-created. This may cause problems with any callbacks written
to

% depend on the value of the handle at the time the object was
saved.

% This problem is solved by saving the output as a FIG-file.

%

% To reopen this object, just type the name of the M-file at the
MATLAB

% prompt. The M-file and its associated MAT-file must be on your
path.

%

% NOTE:
this

$ M-file due to limitations of this format,
superseded by
$ FIG-files.
editor tools
% are incompatible with the M-file/MAT-file format, and should be
saved as

$ FIG-files.

©

global g;

Note that handle values may change when these

certain newer features in MATLAB may not have been saved in
which has been

Figures which have been annotated using the plot

Def menuNew;
%
g.Figure.Dimensions=[750 520}
g.Figure.AspectRatio=0.75;
g.Figure.Margin=20;

%

59

.Figure.Handle figure('Color',[0.97 0.97 0.92],
'FileName', 'C:\MATLABR1l\project\tryl.m',
'PaperPosition’',[18 180 576 432],

'PaperUnits', 'points’,
'Position', [g.Figure.Margin g.Figure.Margin

.Figure.Dimensions (1) g.Figure.Dimensions(2)1],

‘Tag', 'Figl’',

'Name', 'Speech Analysis’',...

'NumberTitle',

'off’,

'MenuBar', 'none', ..
'ToolBar', 'none');
I

de de

[{eqTo JuTeyTe] QOO FQWQQa oo

WUQUQ QYUY FAQQUQQ FQQAQQ FQQQQ *

Q Qg ®

.Figure.Menu (1)
.Figure.Menu (1)
.Figure.Menu (1)
.Figure.Menu (1)

.Figure.Menu (2)
.Figure.Menu (2)
.Figure.Menu (2)
.Figure.Menu(2)

.Figure
.Figure
.Figure
.Figure

.Figure.Menu (4)
.Figure.Menu(4)
.Figure.Menu (4)
.Figure.Menu (4)

.Figure.Menu (5)
.Figure.Menu (5)
.Figure.Menu (5)
.Figure.Menu (5)

.Figure.Menu(6)
.Figure.Menu (6)
.Figure.Menu (6)
.Figure.Menu (6)

.Figure.Menu(7)
.Figure.Menu(7)
.Figure.Menu (7)
.Figure.Menu(7)

.Figure.Menu (8)
.Figure.Menu (8)
.Figure.Menu (8)
.Figure.Menu (8)

.Figure.Menu (9)
.Figure.Menu (9)
.Figure.Menu (9)

Adding New Menu

Menu No 1

Menu No 2

Menu No 3

.Menu (3)
.Menu (3)
.Menu (3)
.Menu (3)

Menu No 5

Menu No 6

Menu No 7

Menu No 8

Menu No 9

Menu No 9

.Name="'&File';
.Function="'";
.Parent=g.Figure.Handle;
.Enable='on';

.Name="'&Tool"';
.Function="'";
.Parent=g.Figure.Handle;
.Enable='off"';

.Name="'&Spectrogram’;
.Function="'"; ,
.Parent=g.Figure.Handle;
.Enable='off"’';

.Name="'&V/UV"';
.Function='V_UV2';
.Parent=g.Figure.Handle;
.Enable='"off"';

.Name='&Pitch';
.Function="'";
.Parent=g.Figure.Handle;
.Enable='off';

.Name='&Formants';
.Function="'";
.Parent=g.Figure.Handle;
.Enable='off';

.Name="'&Energy"'’
.Function="'Energy':
.Parent=g.Figure.Handle;
.Enable='off"';

.Name='&Spectrum’';
.Function='Spectrum’;
.Parent=g.Figure.Handle;
.Enable='ocff"';

.Name="'&Play';
.Function="'";
.Parent=g.Figure.Handle;

60

g.Figure.Menu(9) .Enable="'off"';

g.Figure.NumMenu=length (g.Figure.Menu) ;

%

for i=1l:g.Figure.NumMenu
h(i)=uimenu('Parent’',g.Figure.Menu(i) .Parent,...
'Label',g.Figure.Menu(i) .Name, ...
'callback',g.Figure.Menu(i) .Function, ...
'Enable',g.Figure.Menu(i) .Enable, ...
'Tag',g.Figure.Menu (i) .Name) ;
g.Figure.Menu (i) .Handle=h(i) ;

end

g0

Adding

Q Q9 ®QQQ ok ok

Q QQ Q QW Qa Q aQ [o[Te e} Q QW Q awQ Q qQ

[e[Te e}

.Figure.
.Figure.
.Figure.

.Figure.
.Figure.
.Figure.

.Figure.
.Figure.
.Figure.

.Figure.
.Figure.
.Figure.

.Figure.
.Figure.
.Figure.

.Figure.
.Figure.
.Figure.

.Figure.
.Figure.
.Figure.

.Figure.
.Figure.
.Figure.

.Figure.
.Figure.
.Figure.

.Figure.

SubMenu

SubMenu 1
.Figure.
.Figure.
.Figure.
SubMenu 2
.Figure.
.Figure.
.Figure.

SubMenu (1)
SubMenu (1)
SubMenu (1)

SubMenu (2)
SubMenu (2)
SubMenu (2)

SubMenu (3)
SubMenu (3)
SubMenu (3)

SubMenu (4)
SubMenu (4)
SubMenu (4)

SubMenu (5)
SubMenu (5)
SubMenu (5)

SubMenu (6)
SubMenu (6)
SubMenu (6)

SubMenu (7)
SubMenu (7)
SubMenu (7)

SubMenu (8)
SubMenu (8)
SubMenu (8) .

SubMenu (9) .
SubMenu (9) .
SubMenu (9) .

SubMenu (10)
SubMenu (10)
SubMenu (10)

SubMenu (11)
SubMenu (11)
SubMenu (11)

SubMenu (12)

.Name="'&Averaged Pitch';
.Function='Pitch(l) ';
.Parent=g.Figure.Menu(5)

.Name="'&Single Pitch';
.Function='Pitch(2) ';
.Parent=g.Figure.Menu(5)

.Name="'&Pitch Curve';
.Function='PitchCurve’;
.Parent=g.Figure.Menu(5)

.Name="'&Al1l Data'’
.Function='play Data’;
.Parent=g.Figure.Menu (9)

.Name="'&Voiced Segment'’
.Function='play voiced';
.Parent=g.Figure.Menu (9)

.Name="'&Data Segment';
.Function='PlaySeqg’;
.Parent=g.Figure.Menu(9)

.Name="'&Spectrogram'
.Function="'SpegramNew' ;
.Parent=g.Figure.Menu(3)

.Name="'&Color'
.Function="'";

Parent=g.Figure.Menu (3)

Name="'&Zoom'
Function='Zooming';
Parent=g.Figure.Menu(2)

.Name="'&Reset Defaults';

.Handle;

.Handle;

.Handle;

.Handle;

.Handle;

.Handle;

.Handle;

.Handle;

.Handle;

’

.Function='ResetDefaults’';
.Parent=g.Figure.Menu(2) .Handle;

.Name="'&0ption'’
.Function="'"';

.Parent=g.Figure.Menu(2) .Handle;

.Name="'&0pen'

aawv Q QW v

a QW

g.

%

.Figure. SubMenu (12)
.Figure.SubMenu (12)

.Figure. SubMenu (13)
.Figure. SubMenu (13)
.Figure. SubMenu (13)

.Figure.SubMenu (14)
.Figure. SubMenu (14)
.Figure. SubMenu(14)

.Figure. SubMenu (15)
.Figure. SubMenu (15)
.Figure. SubMenu (15)

.Figure.SubMenu(16)
.Figure. SubMenu (16)
.Figure. SubMenu (16)

61

.Function='Waveform';
.Parent=g.Figure.Menu(l) .Handle;

.Name="'&New'
.Function='Record’;
.Parent=g.Figure.Menu(l) .Handle;

.Name="'&Exit'
.Function="'close(gcf) ';
.Parent=g.Figure.Menu(l) .Handle;

.Name="'&Formants"'
.Function='Formants';
.Parent=g.Figure.Menu(6) .Handle;

.Name='&Formants History'
.Function='FormantsHistory"';
.Parent=g.Figure.Menu(6) .Handle;

Figure.NumSubMenu=length (g.Figure. SubMenu) ;

for i=l:g.Figure.NumSubMenu

h(i)=uimenu ('Parent',g.Figure.SubMenu(i) . Parent, ...
'Label',g.Figure. SubMenu(i) .Name, ...
'callback',g.Figure.SubMenu (i) .Function, ...

'Tag’',g.Figure.

SubMenu (i) .Name) ;

g.Figure.SubMenu (i) .Handle=h (i) ;

end

QY o VOO o Qg oe Qv o Oy & o a0

(oo e B

.Figure.SSubMenu (1)
.Figure.SSubMenu (1)
.Figure.SSubMenu (1)

.Figure. SSubMenu (2)
.Figure. SSubMenu (2)
.Figure. SSubMenu (2)

.Figure. SSubMenu (3)
.Figure. SSubMenu (3)
.Figure.SSubMenu (3)

.Figure. SSubMenu (4)
.Figure. SSubMenu (4)
.Figure. SSubMenu (4)

.Figure.SSubMenu (5)
.Figure. SSubMenu (5)
.Figure. SSubMenu (5)

.Figure.SSubMenu (6)
.Figure.SSubMenu(6)
.Figure. SSubMenu(6) .

Adding SSubMenu
SSubMenu 1

SSubMenu 2

SSubMenu 3

SSubMenu 4

SSubMenu 5

SSubMenu 6

.Name="'&gray"'
.Function="'colormap (abs (gray-1)) ';
.Parent=g.Figure.SubMenu(8) . Handle;

.Name="'&hsv'
.Function='colormap (hsv) ';
.Parent=g.Figure.SubMenu (8) .Handle;

.Name="'ghot'
.Function="'colormap (hot) ';
.Parent=g.Figure. SubMenu (8) .Handle;

.Name="'&cool"'
.Function='colormap(cool) ';
.Parent=g.Figure.SubMenu (8) .Handle;

.Name="'&jet"'
.Function="'colormap(jet) ';
.Parent=g.Figure.SubMenu(8) .Handle;

.Name="'&Spectrogram'
.Function='OptionSpecN' ;

Parent=g.Figure.SubMenu(1l1l) .Handle;

QU VYW QWY F QWO o

Qv Qv K

%

.Figure. SSubMenu(7)
.Figure. SSubMenu(7)
.Figure.SSubMenu(7)

.Figure. SSubMenu (8)
.Figure. SSubMenu (8)
.Figure. SSubMenu (8)

.Figure. SSubMenu (9)
.Figure. SSubMenu (9)
.Figure. SSubMenu (9)

SSubMenu 7

SSubMenu 8

SSubMenu 8

SSubMenu 8

.Figure.SSubMenu(10)
.Figure. SSubMenu (10)
.Figure.SSubMenu(10)

SSubMenu 8

.Figure.SSubMenu(11)
.Figure. SSubMenu (11)
.Figure. SSubMenu (11)

62

.Name="'&Energy"'
.Function='EnergyOptions';
.Parent=g.Figure.SubMenu(ll) .Handle;

.Name="'§&Formants'
.Function='FormantsOptions';
.Parent=g.Figure.SubMenu(ll) .Handle;

.Name='&Pitch’
.Function='PitchOptions’';
.Parent=g.Figure.SubMenu(ll) .Handle;

.Name="'&Spectrum’
.Function="'SpectrumOptions’';
.Parent=g.Figure.SubMenu(ll) .Handle;

.Name="'&V/Uvoiced’
.Function='VUVoicedOptions';
.Parent=g.Figure. SubMenu(1l1l) .Handle;

.Figure.NumnSSubMenu=length (g.Figure. SSubMenu) ;

for i=l:g.Figure.NumSSubMenu

h(i)=uimenu ('Parent',g.Figure.SSubMenu(i) .Parent, ...
'Label',g.Figure.SSubMenu(i) .Name, ...
'callback',g.Figure.SSubMenu(i) . Function, ...

'Tag’',g.Figure.

SSubMenu (i) .Name) ;

g.Figure.SSubMenu (i) .Handle=h (i) ;

end

%

% Buttons initialization

$for i=1l:g.Figure.NumrFunction,

%
%
%
%
%
%
%
%
%
%
%
%

h(i) = uicontrol ('

Parent',g.Figure.Handle,

'Units', 'normalized’',

'FontUnits',

‘points’,

'BackgroundColor',[0.75 0.75 0.75],
'FontSize',10,

'ListboxTop'’

IOI

'Position',[0.8547 0.056*i 0.120 0.0485],

'Callback’,

g.Button(i) . Function,

'String',g.Button (i) .Name,
'Tag',g.Button (i) .Name) ;
g.Button(i) .Handle=h (i) ;

end

g

hl

axes ('Parent’',g.

Figure.Handle,

'Units', 'normalized’',

"Color',[1 1 1],

‘Position’',[0.15 0.6 0.68 0.3],

'Box','on',...
'Tag', 'Axesl');

63

hl = axes('Parent',g.Figure.Handle,
'Units', 'normalized',
'Color',[1 1 1], .
'Position',[0.15 0.15 0.68 0.3],
'Box','on',...
'Tag', 'Axes2') ;

o0

.Figure.AxeslHandle

g findobj ('Tag', 'Axesl’')
g.Figure.Axes2Handle

findobj ('Tag', 'Axes2')

set (gcf, 'ResizeFcn', 'rsz') ;

Waveform display

function Waveform
% This function give the user the ability to choose the wave file
% he wants, then display the waveform of that sound

global g;

% Signal is the name of our data (wave data)
[filename,pathname]=uigetfile('*.wav',k 'Selec the sound wave file')
% This function display the dialog box then give us the file name
% of the selectd file :
[g.signal.Data,g.signal.fs]=wavread(strcat (pathname,filename))

% Read the wave which has the name (filename)

axes (g.Figure.AxeslHandle) ;

set (g.Figure.AxeslHandle, 'UserData’',g.signal.Data);
t=(l:length(g.signal.Data))/g.signal.fs;

plot(t,g.signal.Data, 'color',[0 O 0]);

% display the waveform on the interface

xlabel ('Time,

Seconds', 'FontSize',10, 'FontUnit', 'normalized', 'FontWeight', 'normal"’
) ’
ylabel ('Amplitude, m
volt','FontSize',10, 'FontUnit', 'normalized’', 'FontWeight', 'normal') ;
title(filename, 'FontSize',10, 'FontUnit', 'normalized', 'FontWeight', 'n
ormal') ;

for i=l:g.Figure.NumMenu
set (g.Figure.Menu(i) .Handle, 'Enable', 'on')
end

axes (g.Figure.Axes2Handle) ;
cla;

Energy Anal_ysi‘s

function Energy

% This Function make the classification of voiced and
ung.signal.voiced speech

% and return with voiced frames

global g;

64

$WindowLength=256;

N =
floor (length(g.signal.Data)/ (g.Options.Energy .WindowWidth*g.Options.
Energy.Overlap)) ;

$using hamming window 256 points
window = feval (g.Options.Energy.WindowType,
g.Options.Energy.WindowWidth) ;

j=1;
Energy=I[]:

for i=1:N-1
segment = g.signal.Data(j:g.Options.Energy.WindowWidth-1+3j) ;
$take a segment of the data with 256 length

windowedseg = sum((segment. *window) .*2);

Energy = [Energy,windowedseg']:;
j = j + g.Options.Energy.WindowWidth * g.Options.Energy.Overlap;
end

Energy = Energy(:);

axes (g.Figure.Axes2Handle)

t=(1:N-

1) /g.signal.fs*g.Options.Energy.WindowWidth*g.Options.Energy.Overlap
plot(t,Energy, 'color',[0 O 0]1);

xlabel ('Time in

second', 'FontS8ize',10, 'FontUnit', 'normalized’, 'FontWeight', 'normal')
ylabel ('Energy in

what', 'FontSize',10, 'FontUnit', 'normalized’', 'FontWeight', 'normal"') ;
title('ST-Energy
Curve','FontSize',10, 'FontUnit', 'normalized', 'FontWeight', 'normal') ;

function fig = EnergyOptions ()

% This is the machine-generated representation of a Handle Graphics
object

% and its children. Note that handle values may change when these
objects

% are re-created. This may cause problems with any callbacks written
to

% depend on the value of the handle at the time the object was
saved.

% This problem is solved by saving the output as a FIG-file.

%

% To reopen this object, just type the name of the M-file at the
MATLAB

% prompt. The M-file and its associated MAT-file must be on your
path.

% .

% NOTE: certain newer features in MATLAB may not have been saved in
this

% M-file due to limitations of this format, which has been
superseded by

% FIG-files. Figures which have been annotated using the plot
editor tools

65

% are incompatible with the M-file/MAT-file format, and should be
saved as
$ FIG-files.

load EnergyOptions

hO = figure('Color',[0.97 0.97 0.92],
‘Colormap’',mat0l, .
'FileName', 'C:\MATLABR11\project\EnergyOption.m',
'MenuBar', 'none', '
'Name', 'Energy Options',
'NumberTitle', 'off"’, .
'PaperPosition',[18 180 500 432],
'PaperUnits', 'points’',
'‘Position', [230 230 304 130],
'Tag', 'Figl’',
'ToolBar', 'none') ;
hl = uicontrol ('Parent', h0,
'Units', 'normalized’', .
'BackgroundColor',[0.97 0.97 0.95],
'Callback’', 'EnergyWindowType',
'ListboxTop',0,
'Position',[0.6611842105263156 0.5615384615384615
0.2434210526315789 0.1307692307692308],
'String', ['hamming ';'hanning ';'kaiser
';'bartlett';'blackman'],
'Style', 'popupmenu',
'Tag', 'PopupMenul’,
'Value',1);
hl = uicontrol('Parent', hO,
'Units', 'normalized', .
'BackgroundColor',[0.97 0.97 0.92],
'FontAngle', 'italic’',
'FontWeight', 'demi’',
'ListboxTop',0, ..
'Position',[0.01973684210526316 0.7692307692307693
0.3355263157894737 0.1461538461538462],
'String', 'Window Length',
'Style', "text’',
'Tag', 'Textl') ;
hl = uicontrol ('Parent',6hO,
'Units', 'normalized’', .
'BackgroundColor', [0.97 0.97 0.92],
'FontAngle', 'italic’',
'‘FontWeight', 'demi’,
'ListboxTop',0,
'Position' ,matl,
'String', 'Overlab’,
'Style', "text',
'Tag', 'Textd"') ;
hl = uicontrol ('Parent', 6 h0,
'Units', 'normalized’',
'BackgroundColor', [0.752941176470588 0.752941176470588
0.752941176470588],
'Callback’', 'Apply’,
'ListboxTop',0, ...
'Position',[0.1513157894736842 0.1461538461538462
0.2335526315789473 0.1769230769230769],
'String’', 'Apply’', ..
'Tag', 'Pushbuttonl’') ;
hl = uicontrol('Parent',ho0,

66

'Units', 'normalized’,
'BackgroundColor', [0.97 0 97 0.92],
'FontAngle', 'italic’',
'FontWeight', 'demi’,
'ListboxTop',0,
'Position' , mat2,
'String', 'Window Type',
'Style', 'text’',
'Tag', 'Textd') ;
hl = uicontrol ('Parent',hO,
'Units', 'normalized', .
'BackgroundColor', [0.752941176470588 0.752941176470588
0.752941176470588],
'Callback’', 'close (gcf) ',
'ListboxTop',0, ..
'Position', [0.5592105263157895 0.1384615384615385
0.2138157894736842 0.1846153846153846],
'String', 'Cancel’,
'Tag', 'Pushbuttonl');
hl = uicontrol ('Parent', hO,
'Units', 'normalized’', .
'BackgroundColor', [0. 97 O 97 0.95],
'Callback’', 'EnergyWindowWidthSeting', ...
'ListboxTop',O, P
'Position', [0.08552631578947366 0.5230769230769231
0.1842105263157895 0.1692307692307692],
'Style', 'edit',
'Tag','Editl');
hl = uicontrol ('Parent',ho0,
'Units', 'normalized’, .
'BackgroundColor',[0.97 0.97 0.95],
'Callback'’', 'EnergyOverlabSeting’',
'ListboxTop',0, ...
'Position',[0.3782894736842105 0.5153846153846154 0.1875
0.1769230769230769],
'Style', 'edit',
'Tag', 'Edit2') ;
if nargout > 0, fig = hO; end

Overlab Setting

function EnergyOverlabSeting

global g;

Edit2Handle = findobj('Tag’', 'Edit2') ;
O = get(Edit2Handle, 'String');
g.Options.Energy.Overlap = eval(0);

Window Type Setting

function EnergyWindowType
global g;
h=findobj ('Tag', 'PopupMenul’) ;
val = get(h, 'Value') ;

close (gcf)
if val ==

g.Options.Energy.WindowType = 'hamming'
elseif val ==
= ‘'hanning'

g.Options.Energy.WindowType

67

elseif val ==

g.Options.Energy.WindowType = 'kaiser'
elseif val ==

g.Options.Energy.WindowType = 'bartlett’
elseif val ==

g.Options.Energy.WindowType = 'blackman'

end

Window Width Setting

function EnergyWindowWidthSeting
global g;

Edit2Handle = findobj('Tag','Editl');
W=get (Edit2Handle, 'String’') ;
g.Options.Energy.WindowWidth = eval (W) ;

Formant Analysis

function Peak=Fin4Peaks(H)

% finding the sign of the derivative

4 = sign(diff(H));

Peak = [];

% add the adjacent element to see the point of converting form + to
- and vice versa

Peak = diff(4d):

$ finding the peaks indexes
Peak = find(Peak==-2);

function Formants=Formants
global g;

EST = [320 1440 2760 3200} ; $ EST in Hz

EST = fix(EST*g.Options.Formants.FftLength/g.signal.fs); % EST in
index

Term = ginput(l) ;

Term = fix (Term*g.signal.fs);

segment =
g.signal.Data(Term(1l): (Term (1) +g.Options.Formants. SegmentLength)) ;

S
%

[0 O O 0); $ Four slots

a = lpc(segment,g.Options.Formants.CofficientsNumber) ;
% Vocal tract Transfer Function at r=1
Horignal = 1./abs(fft(a,g.Options.Formants.FftLength));

r=1;
[S,Peak,H] = lpcFormants(a,r,g.signal.fs,S,EST);

T

% step 5 deal with Unfilled Slots

$ if S1, 82, S3 are all filled, go to Setp 6. Otherwise:

% Recompute the spectrum on a circle with radius less than one to
enhance the formants

68

if ~isempty(find(S(1:3)==0)),

while 1,
r = r-0.004;
if r<0.88, break; end;
[S, Peak,H] = lpcFormants(a,r,g.signal.fs,S,EST);
if isempty(find(S(1:3)==0)), break; end;
$plot (H) ;

end;

end;

$if ~isempty(S(1:3)==0),

% while 1,
% r = r-0.004;
% if r<0.88, break; end;
% [S, Peak,H] = lpcFormants(a,r,g.signal.fs,S,EST);
% if isempty(S(1:3)==0), break; end;
$plot (H) ;
% end;
$end;

$if the empty slot was S3, and enhancement failed to yield a peak,
$then the peak in S4 is moved down to 83, assuming that F3 was
mistakenly called F4
if s8(3) == 0

S(3) = 5(4);
end

$whether or not enhancement has succeeded, the amplitudes of the
peaks are reset to
$the amplitudes in the original spectrum.
k = find(S~=0);
PeakAmp = [];
for i = 1l:length(k)
PeakAmp (i) = Horignal(S(k(i))):
end

$if a slot is empty, keep the original formant estimate for that
formant
for i = l:length(S)

if S(i)==0

S(1)=EST (i) ;

end
end
%

Formants = S /g.Options.Formants.FftLength * g.signal.fs;

axes (g.Figure.Axes2Handle) ;
for i=1l:1length (Peak)
x (i)=Horignal (Peak (i))
end
plot (Peak,x,'+"')
hold on
plot (Horignal (1:end/2), 'color', 'k');
hold off

69

msgbox(['Fl = ' ,num2str (Formants(1l)),' Hz',' F2 =",
num2str (Formants(2)), 'Hz',' F3 = ', num2str (Formants(3)),
'Hz'], 'Formants in Hz', 'help');

function [S, Peak,H]=lpcFormants(a,r,fs,S,EST)
global g

% r contribute in Peak enhanciment
a=a.*r."(-(0:g.0ptions.Formants.CofficientsNumber)) ;
% Vocal tract Trasfer Function

H = 1./abs(fft(a,g.0Options.Formants.FftLength)) ;

% Discard Formants more than g.Options.Formants.FormantsEnd 3400 Hz
ending = fix((g.Options.Formants.FormantsEnd-

1) *g.Options.Formants.FftLength/£fs)+1;

begining = fix((g.Options.Formants.FormantsStart-

1) *g.Options.Formants.FftLength/fs)+1; % check +-1, I check

H = H(begining:ending) ;

%
% Step 1 Fetch Peaks. Find the frequencies and amplitude of up to
four peaks

% in the region form 150 to 3400 H=z.

Peak = FindPeaks (H) ;

Peak Peak (1:min([4, length(Peak)l));

Peak = Peak + begining; % add the begining to the peak index
NumPeak = length (Peak) ;

Q
T

Th=filter([1/2 1/2],1,EST);
Th=Th (2:end) ;

%
% Step 2 Fill each formant slot form 1 to 4, with the best candidate
peak Peak(j),

% by the following rule: The peak Peak(j) closest in frequency to
estimate

$ EST(i) goes into slot S(i).
S(sum(kron(ones(3,1) ,Peak(:) ') >kron (ones (1,NumPeak) ,Th(:)),1)+1l)=Pea
k;

%
% step 4 deal with Unassigned Peaks

% Search for unassigned Peak

NumPeak=length (Peak) ;

D=kron (ones (1,NumPeak) ,S(:))~ kron(ones(4,1) ,Peak(:)"');
D= (D:::O) ;

D=sum (D) ;

k=find (D==0) ;

%

% if there is a peak Peak (j=k) unassigned, and an S(i=k) unfilled,
£fill the

% slot with the peak and go to step 5.

for i=1l:length (k)

if s(k(i))==0,
S(k(i)) = Peak(k(i));

70

% if there is a peak Peak(j=k) unassigned, but slot S(i=k) is
" already filled,
% check the amplitude of Peak(k) as follows:
% if amp (Peak(k)) < 1/2 amp (peak already assigned to S(k)),
% throw Peak (k) and go to step 5
elseif (H(Peak(k(i))) >= 1/2*H(S(k(i))))
if k(i)<4 & S(k(i)+1)==0,
S(k(i)+1)=S(k(i))
S(k(1i))=Peak (k(i))
elseif k(i)>1 & S(k(i)-1)==0,
S(k(i)-1)=S(k (1))
S(k(i))=Peak (k(i));
end;
end;
end;

%

Coefficient Number Setting

function FormantsCoffNumSeting

global g;

EditlHandle = findobj('Tag', 'Editl');

C = get(EditlHandle, 'String');
g.Options.Formants.CofficientsNumber = eval (C) ;

Formant End Setting

function FormantsEndSeting

global g;

Edit4Handle = findobj('Tag', 'Edit4d"');

E = get(Edit4Handle, 'String') ;
g.Options.Formants.FormantsEnd = eval (E) ;

Formants Fft Length Setting

function FormantsFftlLengthSeting
global g;

Edit2Handle = findobj('Tag', 'Edit2') ;

F = get(Edit2Handle, 'String');
g.Options.Formants.FftLength = eval (F) ;

Formants Segment Length Setting

function FormantsSegmentLengthSeting
global g;

EditSHandle = findobj('Tag', 'Edit5');

S = get(Edit5Handle, 'String');
g.Options.Formants.SegmentLength = eval(S);

Formants Start Setting

function FormantsStartSeting

global g;

Edit3Handle = findobj('Tag', 'Edit3"');

S=get (Edit3Handle, 'String') ;
g.Options.Formants.FormantsStart = eval(S);

Formant Options Interface

function fig = FormantsOptions ()

% This is the machine-generated representation of a Handle Graphics
object

71

% and its children. Note that handle values may change when these
objects

¥ are re-created. This may cause problems with any callbacks written
to

% depend on the value of the handle at the time the object was
saved.

% This problem is solved by saving the output as a FIG-file.
%

% To reopen this object, just type the name of the M-file at the
MATLAB

% prompt. The M-file and its associated MAT-file must be on your
path.

%

% NOTE: certain newer features in MATLAB may not have been saved in
this

% M-file due to limitations of this format, which has been
superseded by

% FIG-files. Figures which have been annotated using the plot
editor tools

% are incompatible with the M-file/MAT-file format, and should be
saved as
% FIG-files.

load FormantsOptions

hO0 = figure('Color’',[0.97 0.97 0.92],
'Colormap’' ,mat0,
'FileName', 'C:\MATLABRl1l\work\project\FormantsOptions.m',
'MenuBar’', 'none', .
'Name', 'Formants Options',
'NumberTitle', 'off"', -
'PaperPosition', [18 180 400 432],
'PaperUnits', 'points’', -
'Position',[160 230 458 130],
'Tag', 'Figl’',
'ToolBar', 'none') ;
hl = uicontrol('Parent' h0,
'Units', 'normalized’', .
'BackgroundColor',[0.97 0.97 0.92],
'FontAngle', 'italic',
'FontWeight', 'demi’,
'ListboxTop',0, .
'Position',[0.04148471615720523 0.7153846153846154
0.1659388646288209 0.2307692307692308],
'String', 'Cofficients Number',
'Style', 'text',
'Tag', 'Textl');
hl = uicontrol ('Parent', ho0,
'Units', 'normalized', ...
'BackgroundColor',[0.97 0.97 0.92],
'FontAngle', 'italic’,
'FontWeight', 'demi’,
'ListboxTop',0, ..
'‘Position',[0.2510917030567685 0.6923076923076923
0.1397379912663755 0.2538461538461538],
'String', 'FFT Length',
'Style', "text",
'Tag’', 'Textd');
hl = uicontrol('Parent’', hO,
'Units', 'normalized', ...
'BackgroundColor',[0.97 0.97 0.92],

72

'FontAngle', 'italic’',

'FontWeight', 'demi’,

'ListboxTop',0, ...
'Position',[0.4344978165938864 0.7076923076923077

0.1593886462882096 0.2384615384615385],

hl

hl

hl

hl

hl

hl

hl

'String', 'Formants Start’',

'Style', 'text’,

'Tag', 'Textd"') ;

= uicontrol ('Parent’', h0,

'Units', 'normalized!’, .
'BackgroundColor',[0.97 O 97 0.92],
'FontAngle’', 'italic',

'FontWeight', 'demi’',
'ListboxTop',0,

'Position’',matl,

'String', 'Formants End’',

'Style', "text',

'Tag', 'Textd"');

= uicontrol ('Parent’',hO,

'Units', 'normalized’, .
'BackgroundColor', [0.97 0 97 0.92],
'FontAngle', 'italic’',

'FontWeight', 'demi’,
'ListboxTop',0,

'Position’',mat7,

'String', 'Segment Length',

'Style', 'text',

'Tag', 'Text4d ') ;

= uicontrol ('Parent', h0,

'Units', '"normalized', .
'BackgroundColor', [0.97 0 97 0.95],
'Callback’', 'FormantsCoffNumSeting'
'ListboxTop!',0,

'Position',mat2,

'Style','edit’',

'Tag','Editl"');

= uicontrol ('Parent', hO,

'Units', 'normalized', .
'BackgroundColor',[O 97 0 97 0.95],
'Callback', 'FormantsFftLengthSeting'
'ListboxTop',0,

'Position',mat3,

'Style’', 'edit’',

'Tag', 'Edit2"') ;

= uicontrol ('Parent', 6 h0,

'Units', 'normalized’, .
'BackgroundColor',[O 97 0 97 0.95],
'Callback', 'FormantsStartSeting'
'ListboxTop',0,

'Position',mat4,

'Style','edit',

'Tag','EAit3"');

= uicontrol ('Parent’',6hO,

'Units', 'normalized’, .
'BackgroundColor',[0.97 0 97 0.95],
'Callback', 'FormantsEndSeting'
'ListboxTop',0,

'Position',math,

'Style', 'edit',

'Tag', 'Editd"');

= uicontrol ('Parent', hO,

73

'Units', 'normalized’, .

'BackgroundColor',[0.97 0.97 0.95], ...

'Callback', 'FormantsSegmentLengthSeting’,

'ListboxTop',0,

'Position',maté,

'Style', 'edit’',

'Tag’', 'EAit5"'") ;
hl = uicontrol('Parent’',hO,

'Units', 'normalized’', .

'BackgroundColor', [0.752941176470588 0.752941176470588
0.752941176470588],

'Callback', 'Apply’',

'ListboxTop',0, .

'Position',[0.2358078602620087 0.07692307692307693
0.1506550218340611 0.1769230769230769],

'String', 'Apply’',

'Tag', 'buttonl’') ;
hl = uicontrol ('Parent',bhO,

'Units', 'normalized', ...

'BackgroundColor', [0.752941176470588 0.752941176470588
0.752941176470588],

'Callback’', 'close(gcf) ',

'ListboxTop',O/ .

'‘Position', [0.6193595342066958 0.07692307692307693
0.1506550218340611 0.1846153846153846],

'String', 'Cancel’',

'Tag’', 'button2') ;
if nargout > 0, fig = hO; end

function Formants=FormantsHistory
global g;

spegramNew;

hold on;

N =
floor(length(g.signal.Data)/((g.Options.Energy.WindowWidth*g.Options
.Energy.Overlap)+1)) ;

window = feval (g.Options.Energy.WindowType,
g.Options.Energy.WindowWidth) ;

% This is tell the user that he should wait for porcessing
h = waitbar (0, 'Please wait Formants History in progress');

3=1;
F=[];

for i=1:N
segment = g.signal.Data(j:g.Options.Energy.WindowWidth-1+3j) ;
$take a segment of the data with 256 length
windowedseg = segment.*window;

EST
EST
index

segment = windowedseg;

il

[320 1440 2760 3200]:; $ EST in Hz
fix (EST*g.Options.Formants.FftLength/g.signal.fs); % EST in

i

S =000 0 0]; % Four slots

74

= lpc(segment,g.Options.Formants.CofficientsNumber) ;
Vocal tract Transfer Function at r=1

= 1./abs(fft(a,g.Options.Formants.FftLength)) ;

= 1;

8 = lpcFormants(a,r,g.signal.fs,S,EST);

%—

% step 5 deal with Unfilled Slots

% if 81, S2, S3 are all filled, go to Setp 6. Otherwise:

% Recompute the spectrum on a circle with radius less than one to
enhace the formants

if ~isempty(S(1:3)==0),

while 1,
r = r-0.004;
if r<0.88, break; end;
[S, Peak] = lpcFormants(a,r,g.signal.fs,S,EST);
if isempty(S(1:3)==0), break; end;
end;

end;
$this is user wait indication
waitbar(i/ (N-1))

$if the empty slot was S3, and enhancement failed to yield a peak,
%then the peak in S4 is moved down to S3, assuming that F3 was
mistakenly called F4
if §(3) ==

5(3) = s(4);
end

%whether or not enhancement has succeeded, the amplitudes of the
peaks are reset to
$the amplitudes in the original spectrum.
k = find(S~=0) ;
PeakAmp = [];
for i = 1l:length(k)
PeakAmp (i) = H(S(k(i))):
end

$if a slot is empty, keep the original formant estimate for that
formant
for i = 1:1length(S)
if S(i)==
S(i)=EST (1)

end
end

Formants = S /g.Options.Formants.FftLength * g.signal.fs;

F = [F,Formants];

J = J + g.Options.Energy.WindowWidth * g.Options.Energy.Overlap;
end
close (h)

75

axes (g.Figure.Axes2Handle) ;

F = reshape(F,4,length(F)/4);

F(4,:)=[1:

x=(1:N)/g.signal.fs * g.Options.Energy.WindowWidth *
g.Options.Energy.Overlap;

plot(x,F,'."','coloxr’','w");

title ('Formants

History', 'FontSize',10, 'FontUnit', 'normalized', 'FontWeight', 'normal'’
)

hold off

Voiced / Unvoiced Classification

function V_Unvoiced

% This Function make the classification of voiced and
ung.signal.voiced speech

% and return with voiced frames

global g

fs = g.signal.fs;

[B,a] =

feval (g.0Options.Pitch.FilterType,g.Options.Pitch.NumFiltPoles,g.Opti
ons.Pitch.FilterCuttoffFrequency/ (£fs/2)) ;

%low pass filter with cutoff frequecy at 600 Hz

filtered = filter(B,A,g.signal.Data);

$each segment has length of 51.2ms (Term is define that).

Term = fix(g.Options.VUVoiced.SegmentLength * fs);

$Number of frames per or segments per the input sound wave.

N = floor(length(g.signal.Data)/ (Term/2)) ;

j=1;
c=[]1:
NumVoicFram = 0;

g.signal.voiced = [];
% This is tell the user that he should wait for porcessing
h = waitbar (0, 'Please wait...');

$1lmin to lmax represent the segment from 3 to 20 ms
lmin=fix (g.0Options.VUVoiced.PitchStart * fs):
lmax=fix (g.Options.VUVoiced.PitchEnd * fs);

for i=1:N-1
$take a segment of the data with 51.2 ms length
segment=g.signal.Data(3j:Term+]j);
$this is user wait indication

waitbar(i/ (N-1))

correlatedsegment=xcorr (segment) ;

R = correlatedsegment;
M = length(segment) ;
R=R (M:end) ;

R=R(l:min([lmax+l M])) ;

MaxValue=max (R(lmin:end)) ;

K=min (find (R (lmin:end)==MaxValue)) +1lmin-1;

e=sqrt(R(1) /Term) ;

pP=R(K) /R(1) ;
r=sqrt(sum((R(lmin:end) /R(1)) .*2) /length(R(lmin:end)));

$define thersholds e, p, and r

76

if (e > g.Options.VUVoiced.eParameter) & (p >

" g.Options.VUVoiced.pParameter) & (r > g.Options.VUVoiced.rParameter)

c0=1;
NumVoicFram=NumVoicFram+l ;

g.signal.voiced=[g.signal.voiced,segment'];

else

end
c=[c c0];
j=j+fix (Term/2) ;

end
close (h)

c=c;
$this is for plotting the voiced and unvoiced frames with deferent
colors

g.

signal.voiced=g.signal.voiced(:) ;

Onesl28 = ones(l,Term/2);

Mull = kron{(c,Onesl28);

Signal = g.signal.Data(l:length (Mull)) ;
Signal = Signal';
VoicedOnly = Mull.*Signal;

axes (g.Figure.AxeslHandle) ;
t=(1:length (VoicedOnly))/g.signal.fs;
plot(t,VoicedOnly, 'color’','r');

CMull = abs (Mull-1l);

%

Complement of Mull

hold on

UnVoicedOnly = CMull.*Signal;

plot(t,UnVoicedOnly, 'color’', 'k"')

hold off
title('Red part represent the voiced

speech', 'FontSize',10, 'FontUnit', 'normalized’', 'FontWeight'

’

xlabel ('Time in
second', 'FontSize',10, 'FontUnit', 'normalized', 'FontWeight', 'normal"')

’

yvlabel ('Amplitude in m
volt', 'FontSize',10, 'FontUnit', 'normalized', 'FontWeight', 'normal');

, '"normal')

VUV Cut off Frequency Setting

function VUVCuttoffSeting

global g;

Edit8Handle = findobj('Tag',6 'Edit8');

C

g.Options.VUVoiced.FilterCuttoffFrequency = eval(C);

= get(Edit8Handle, 'String') ;

VUV e Parameter Setting
function VUVeParameterSeting
global g

77

EditlHandle = findobj('Tag’','Editl');
e = get(EditlHandle, 'String’') ;
g.Options.VUVoiced.eParameter = eval({e);

VUV Filter Type Setting

function VUVFilterTypeSeting

global g;

PopupmenulHandle = findobj('Tag', 'PopupMenul’) ;
val = get (PopupmenulHandle, 'Value') ;

$close (gcf)

if val == 1

g.Options.VUVoiced.FilterType = 'butter'
elseif val ==

g.Options.VUVoiced.FilterType = 'buttord'
elseif val == 3

g.Options.VUVoiced.FilterType = 'besself'
elseif val ==

g.Options.VUVoiced.FilterType = 'chepyl'
elseif val ==

g.Options.VUVoiced.FilterType = 'ellip'
end

VUV Number of Poles Setting

function VUVNPolesSeting

global g;

Edit7Handle = findobj('Tag','Edit7"') ;

P = get(Edit7Handle, 'String');
g.Options.VUVoiced.NumFiltPoles = eval(P) ;

VUV Window QOverlab Setting

function VUVOverlabSeting

global g;

Edit9Handle = findobj('Tag', 'Edit9"') ;
O = get(EditSHandle, 'String’') ;
g.Options.VUVoiced.Overlap = eval (0O) ;

VUV Pitch End Setting

function VUVPitchEndSeting

global g;

EditSHandle = findobj('Tag', 'Edith'") ;
E = get(EditBHandle, 'String') ;
g.Options.VUVoiced.PitchEnd = eval(E) ;

VUV Pitch Start Setting

function VUVPitchStartSeting

global g:

Edit4Handle = findobj('Tag','Edit4d’'):;

S = get(Editd4Handle, 'String');
g.Options.VUVoiced.PitchStart = eval(S);

VUV p Parameter Setting

function VUVpParameterSeting

global g;

Edit2Handle = findobj('Tag', 'Edit2');

p = get(Edit2Handle, 'String’');
g.Options.VUVoiced.pParameter = eval(p);

VUV r Parameter Setting

function VUVrParameterSeting

78

global g;

Edit3Handle = findobj('Tag', 'Edit3');

r = get(Edit3Handle, 'String');
g.Options.VUVoiced.rParameter = eval(r);

VUV Segment Length Setting

function VUVSegmentLengthSeting

global g;

Edit6Handle = findobj('Tag', 'Edité6');

L = get(Edit6Handle, 'String');
g.Options.VUVoiced. SegmentLength = eval (L) ;

VUV Window Type Setting

function VUVWindowTypeSeting

global g;

Popupmenu2Handle = findobj ('Tag', 'PopupMenu?’) ;
val = get(Popupmenu2Handle, 'Value') ;

$close (gcf)

if val ==

g.Options.VUVoiced.WindowType = 'hamming’
elseif val == 2

g.Options.VUVoiced.WindowType = 'hanning’
elseif val ==

g.Options.VUVoiced.WindowType = 'kaiser’
elseif val ==

g.Options.VUVoiced.WindowType = 'bartlett’

elseif val ==
g.Options.VUVoiced.WindowType = 'blackman'’
end

Pitch Analysis

function Pitch (Position)

switch Position
case 1
PitchlAverage
case 2
Pitchl
end

function Pitchl

global g;

$Select 51.2ms of the input sound wave

fs = g.signal.fs;

Term = ginput(l);

Term fix (Term*£fs) ;

begining = max(l,Term(l));

segmentlength = fix(g.Options.Pitch.Segmentlength*fs) ;
ending = min(length(g.signal.Data) ,Term(l)+segmentlength) ;
selected = g.signal.Data(begining:ending) ;

$Filter the selected segment with a butterworth filter having
cutoff frequency of 600 Hz

[B,A] = butter(6,600/(£s/2));

filtered = filter(B,A,selected);

window = feval (g.Options.Pitch.WindowType,length(filtered)) ;

Q
]

79

$Compute the autocorrelation function for the selected segment, then
find the maximum value

% inside the pitch range from 30 to 200 ms.

$The index of this value will be the lag (L) after adding lmin.
segment = filtered. *window;

xcorr (segment) ;

R
M length (segment) ;

i

lmin
lmax

fix(g.Options.Pitch.PitchStart*fs) ;
fix(g.Options.Pitch.PitchEnd*fs) ;

R = R(M:end) ;
RR = R{(max(lmin, 1):min(lmax, M));

MaxValue = max(RR) ;

Lag = min(find (RR==MaxValue)) ;
Lag = Lag+lmin;

L = Lag;

% »

$This part checks for peaks at one-half, one-third, one-fourth, one-
fifth,

% and one-sixth of the first estimate of the pitch period.

$ If L/2 (rounded up) is within th pitch range, the maximum value of
the autocorrelation

% within (L/2)-5 to (L/2)+5 is located. If (L/2)-5 is less than
lmin, lmin is chosen as the

% lower limit instead of (L/2)-5. If the new peak is greater than
one-half of the old peak,

% the new corresponding lag replaces the old corresponding lag L.

if (lmin <= round(L/2)) &(round(L/2)<=lmax)
seg = R(fix(max (lmin,L/2-5)) :fix(L/2+45)) ;
peak = max(seg);
$check for pitch period doubling error
if peak > (1/2) *R(L)
L =1L/2;
$check for pitch period double doubling error (fourfold
errors)
if (lmin <= round(L/Z))&(round(L/2)<=lmax)
seqg = R(fix(max(lmin,L/2-5)) :fix(L/2+5));
peak = max(seq);
if peak > (1/2) *R(L)
L =1L/2;
break
end
end
$check for pitch period errors of sixfold
if (lmin <= round(L/3)) & (round(L/3)<=1lmax)
seg = R(fix(max(lmin,L/3-5)) :fix(L/3+5));
peak = max(seg)
if peak > (1/2)*R(L)
L =L/3;
break
end
end

end

80

$check for pitch period tripling errors

if (lmin <= round(L/3)) & (round(L/3)<=lmax)
seg = R(fix(max(lmin,L/3-5)):fix(L/3+5));
peak = max(seg);
if peak > (1/2)*R(L)

L = L/3;
break
end

end
$check for pitch period errors of fivefold
if (lmin <= round(L/5)) &(round(L/5)<=lmax)
seg = R{(fix(max(lmin,L/5-5)) :fix(L/5+5));
peak = max(seqg) ;
if peak > (1/2)*R(L)
L = L/5;
break
end
end

end

9
]

%$The pitch period calculated through the following formula.
pitch = fs/L;

%
axes (g.Figure.Axes2Handle)

plot(L,R(L),'+")

hold on

plot(R, 'color',[0 O O1);

hold off

msgbox (['Pitch frequency is ',num2str(fs/L),' Hz'],'Pitch Frequcney
in Hz','help'):

function PitchlAverage

global g;

$select a voiced area from the speech waveform.

fs = g.signal.fs;

Term = ginput(2) ;

begining = max(1l,fix(Term(l) *fs)) ;

ending = min(length(g.signal.Data) ,fix(Term(2)*£fs)) ;

selected = g.signal.Data (begining:ending) ;

$divide this area to an equal segments each segment has the length
of 51.2 ms.

N =

floor (length(selected)/ (g.Options.Pitch. SegmentLength*g.Options.Pitc
h.Overlap*fs)) ;

$Filter the selected segment with a butterworth filter having a
cutoff frequency of 600 Hz

[B,A] =

feval (g.Options.Pitch.FilterType,g.Options.Pitch.NumFiltPoles,g.Opti
ons.Pitch.FilterCuttoffFrequency/ (£fs/2));

filtered = filter(B,A,selected);

$calculate pitch lag for each segment then take the average
i=1;
LL=[];

81

window =
feval (g.Options.Pitch.WindowType,round(g.Options.Pitch.SegmentLength
*£s)) ;

for i = 1:N~-1

$Compute the autocorrelation function for the selected segment,
then find the maximum value

$inside the pitch range from 30 to 200 ms.

$The index of this value will be the lag (L) after adding lmin.

segment = filtered(j:round(g.Options.Pitch.SegmentLength*fs)+j-
1) . *window;

R xcorr (segment) ;

M length (segment) ;

lmin = fix(g.Options.Pitch.PitchStart*£fs);
lmax = fix(g.Options.Pitch.PitchEnd*fs);

R = R(M:end) ;
RR = R(max(lmin, 1) :min(lmax, M));

MaxValue = max(RR) ;

Lag = min (find (RR==MaxValue)) ;
Lag = Lag+lmin;)
L = Lag;

$This part checks for peaks at one-half, one-third, one-fourth,
one-fifth,

% and one-sixth of the first estimate of the pitch period.

% If L/2 (rounded up) is within th pitch range, the maximum value
of the autocorrelation

% within (L/2)-5 to (L/2)+5 is located. If (L/2)~5 is less than
lmin, lmin is chosen as the

% lower limit instead of (L/2)-5. If the new peak is greater than
one-half of the old peak,

% the new corresponding lag replaces the old corresponding lag L.

if (lmin <= round(L/2))&(round(L/2)<=1lmax)
seg = R(fix(max(lmin,L/2-5)):fix(L/2+5));
peak = max(seg);
$check for pitch period doubling error
if peak > (1/2)*R(L)
L =1L/2;
$check for pitch period double doubling error (fourfold
errors) .
if (lmin <= round(L/2)) & (round(L/2)<=lmax)
seg = R(fix(max(lmin,L/2-5)) :fix(L/2+45));
peak = max(seg) ;
if peak > (1/2) *R(L)
L =1L/2;
break
end
end
$check for pitch period errors of sixfold
if (lmin <= round(L/3)) & (round(L/3)<=lmax)
seg = R(fix(max(lmin,L/3-5)):fix(L/3+5));
peak = max(seg);
if peak > (1/2)*R(L)
L = L/3;
break
end

82

end

end
$check for pitch period tripling errors
if (lmin <= round(L/3)) & (round(L/3)<=lmax)
seg = R(fix (max(lmin,L/3-5)) :fix(L/3+5));
peak = max(seg) ;
if peak > (1/2)*R(L)
L = L/3;
break
end
end
$check for pitch period errors of fivefold
if (lmin <= round(L/5))& (round(L/5)<=lmax)
seg = R(fix (max(lmin,L/5-5)) :fix(L/5+5)) ;
peak = max(seg) ;
if peak > (1/2)*R(L)

L =L/5;
break
end
end
end
$overlab with g.Options.Pitch.Overlap.
=13+

round (g.Options.Pitch. SegmentLength*g.Options.Pitch.Overlap*fs) ;
1L = [LL, L]

end

L = sum(LL) /N

$The pitch period calculated through the following formula.
pitch = fs/L;

%
axes (g.Figure.Axes2Handle)

plot(R, 'color',[0 O O]);

msgbox (['Pitch frequency is ',nuﬁ2str(fs/L),' Hz'], 'Pitch Frequcney
in Hz', 'help');

function PitchCurve

global g;

$select a voiced area from the speech waveform.
fs = g.signal.fs;

$divide this area to an equal segments each segment has the length
of 51.2 ms.

N =

floor (length (g.signal.Data)/(g.Options.Pitch.SegmentLength*g.Options
.Pitch.Overlap*fs)) ;

$Filter the selected segment with a butterworth filter having a
cutoff frequency of 600 Hz

[B,a] =

feval (g.Options.Pitch.FilterType,g.Options.Pitch.NumFiltPoles,g.Opti
ons.Pitch.FilterCuttoffFrequency/ (£s/2));

filtered = filter(B,A,g.signal.Data);

83

$calculate pitch lag for each segment then take the average
3=1;
LL=[];

window =
feval (g.Options.Pitch.WindowType,round(g.Options.Pitch.SegmentLength
*fs)) ;

for i = 1:N-1

$Compute the autocorrelation function for the selected segment,
then find the maximum value

$inside the pitch range from 30 to 200 ms.

$The index of this value will be the lag (L) after adding lmin.

segment = filtered(j:round(g.Options.Pitch.SegmentLength*fs)+j-
1) . *window;

R xcorr (segment) ;

M length (segment) ;

lmin = fix(g.Options.Pitch.PitchStart*fs);
lmax fix (g.Options.Pitch.PitchEnd*fs);

t

R = R(M:end) ;
RR = R(max(lmin, 1):min(lmax, M));

MaxValue = max (RR);

Lag = min(find(RR==MaxValue)) ;
Lag = Lag+lmin;
L = Lag;

$This part checks for peaks at one-half, one-third, one-fourth,
one-fifth,

% and one-sixth of the first estimate of the pitch period.

% If L/2 (rounded up) is within th pitch range, the maximum value
of the autocorrelation

% within (L/2)-5 to (L/2)+5 is located. If (L/2)-5 is less than
lmin, lmin is chosen as the

% lower limit instead of (L/2)-5. If the new peak is greater than
one-half of the old peak,

% the new corresponding lag replaces the old corresponding lag L.

if (lmin <= round(L/2)) & (round(L/2)<=1lmax)
seg = R(fix(max(lmin,L/2-5)) :£ix(L/2+5));
peak = max(seqg) ;
$check for pitch period doubling error
if peak > (1/2)*R(L)
L = round(L/2):
$check for pitch period double doubling error (fourfold
errors)
if (lmin <= round(L/2)) & (round(L/2)<=lmax)
seg = R(fix (max(lmin,L/2-5)):fix(L/2+5));
peak = max(seqg) ;
if peak > (1/2)*R(L)
L = L/2;
end
end
$check for pitch period errors of sixfold
if (lmin <= round(L/3)) & (round(L/3)<=lmax)
seg = R(fix (max (lmin,L/3-5)) :£fix(L/3+5));
peak = max(seg);

84

if peak > (1/2)*R(L)
L =L/3;
end
end

end
%$check for pitch period tripling errors
if (lmin <= round(L/3)) & (round(L/3)<=1lmax)
seg = R(fix(max(lmin,L/3-5)):fix(L/3+5))
peak = max(seg);
if peak > (1/2)*R(L)
L =1L/3;
end
end
%check for pitch period errors of fivefold
if (lmin <= round(L/5)) & (round (L/5)<=lmax)
seg = R(fix (max(lmin,L/5-5)) :fix(L/5+5)):;
peak = max(seqg);
if peak > (1/2)*R(L)

L =L/5;
end
end
end
$overlab with g.Options.Pitch.Overlap.
j=3+

round (g.Options.Pitch. SegmentLength*g.Options.Pitch.Overlap*fs) ;
LL = [LL, L]:;

end

L = LL;

%$The pitch period calculated through the following formula.
pitch = fs./L;

Q
]

axes (g.Figure.Axes2Handle)
x=(1:N~1) *g.Options.Pitch. SegmentlLength*g.Options.Pitch.Overlap;

plot(x,pitch,'."', 'color',[0 O 0]);

xlabel ('Time in

second’', 'FontSize',10, 'FontUnit', 'normalized', 'FontWeight', 'normal')
ylabel ('Pitch in
Hz','FontSize',10, 'FontUnit', 'normalized’', 'FontWeight', 'normal') ;
title('Pitch

Curve', 'FontS8ize',10, 'FPontUnit’', 'normalized’', 'FontWeight', 'normal’') ;

Pitch Option Setting

function PitchCuttoffSeting

global g;

Edit5Handle = findobj ('Tag', 'Edit5"'");

C = get(Edit5Handle, 'String');
g.Options.Pitch.FilterCuttoffFrequency = eval(C);

function PitchEndSeting

85

global g;

Edit2Handle = findobj ('Tag','Edit2');
E = get(Edit2Handle, 'String');
g.0Options.Pitch.PitchEnd = eval (E) ;

function PitchFilterTypeSeting
global g;
PopupmenulHandle = findobj('Tag', 'PopupMenul?’) ;
val = get(PopupmenulHandle, 'Value') ;
%close (gcf)
if val ==
g.Options.Pitch.FilterType
elseif val ==
g.Options.Pitch.FilterType = 'buttord’
elseif val ==
g.Options.Pitch.FilterType = 'besself!'
elseif val ==
g.Options.Pitch.FilterType = 'chepyl'
elseif val ==
g.Options.Pitch.FilterType = 'ellip'
end

'butter’

3
function PitchNPolesSeting
global g;
Edit4Handle = findobj ('Tag','Edit4d"') ;
P = get(Edit4Handle, 'String') ;
g.Options.Pitch.NumFiltPoles = eval(P);

function PitchOverlabSeting

global g;

Edit6Bandle = findobj('Tag','Edité') ;
O = get(Edit6Handle, 'String');
g.Options.Pitch.Overlap = eval (0);

function PitchSegmentLengthSeting
global g;

Edit3Handle = findobj('Tag',‘'Edit3');

L = get(Edit3Handle, 'String’');
g.Options.Pitch.Segmentlength = eval (L) ;

function PitchStartSeting

global g;)
EditlHandle = findobj ('Tag','Editl');
S = get(EditlHandle, 'String"');
g.Options.Pitch.PitchStart = eval(8);

function PitchWindowTypeSeting

global g;

Popupmenu2Handle = findobj ('Tag', 'PopupMenu2');
val = get(Popupmenu2Handle, 'Value');

$close (gcf)
if val ==

g.Options.Pitch.WindowType = 'hamming'
elseif val ==

g.Options.Pitch.WindowType = 'hanning'
elseif val ==

g.Options.Pitch.WindowType = 'kaiser'
elseif val ==

g.Options.Pitch.WindowType = 'bartlett’

86

elseif val ==
g.Options.Pitch.WindowType = 'blackman'
end

Spectrogram Analysis

function spegram

global g;

fs=g.signal.fs;

% preemphasis

$x = filter([1l -0.9],1,g.signal.Data);

$FilteredSpeech

=feval ('filter',g.Options.Specgram.FilterCoffecients,1l,g.signal.Data
) :

FilteredSpeech =filter ([l -
g.Options.Specgram.FilterCoffecients],1l,g.signal.Data) ;
$FilteredSpeech = FilteredSpeech (round(1l.82*fs) :round(2.25*fs)) ;
spectrogram =

20*10gl0 (abs (SPECGRAM (FilteredSpeech,g.Options. Specgram.FftSize,g.si
gnal.fs,feval(g.Options.Specgram.WindowType,g.Options.Specgram.Windo
wWidth) ,fix (g.Options.Specgram.WindowWidth*g.Options.Specgram.Overla
p))));

$spectrogram =

20*1o0gl0 (abs (SPECGRAM(g. signal.Data,g.Options. Specgram.FftSize,g.sig
nal.fs,feval (g.Options.Specgram.WindowType,g.Options. Specgram.Window
Width) ,g.0Options. Specgram.Overlap))) ;

axes (g.Figure.Axes2Handle)

colormap (hot) ;

th=-20;

y=spectrogram;
ymax=max (nax (y)) ;

ymin=max ([th min(min(y))1):
k=find (y<ymin) ;

y(k)=ymin;

cmlen=length (colormap) ;
y=(y-ymin) / (ymax-ymin) * (cmlen-1)+1;

sy=flipud(y) ;

t=(0:length(g.signal.Data)-1) /fs;
f=(0:g.0Options.Specgram.FftSize/2-1)/g.Options.Specgram.FftSize*fs;
x=image(t,f,y)

set(gca, 'YDir', 'normal’)

xlabel ('Time,

Seconds', 'FontSize',10, 'FontUnit', 'normalized', 'FontWeight', 'normal’
)

ylabel ('Frequency,
Hz','FontSize',lO,'FontUnit','normalized','FontWéight','normal');
title('Spectrogram',‘FontSize',10,'FontUnit','normalized','FontWéigh
t', 'normal');

Spectrogram Options Interface
function fig = SpecgOption ()

% This is the machine-generated representation of a Handle Graphics
object

87

% and its children. Note that handle values may change when these
objects

% are re-created. This may cause problems with any callbacks written
to

% depend on the value of the handle at the time the object was
saved.

% This problem is solved by saving the output as a FIG-file.

%

% To reopen this object, just type the name of the M-file at the
MATLAB

% prompt. The M-file and its associated MAT-file must be on your
path.

%

% NOTE: certain newer features in MATLAR may not have been saved in
this

% M-file due to limitations of this format, which has been
superseded by

% FIG-files. Figures which have been annotated using the plot
editor tools

% are incompatible with the M-file/MAT-file format, and should be
saved as

% FIG-files.

load Option

hO = figure('Color',[0.8 0.8 0.8],
'Colormap',matO, .
'FileName', 'C:\MATLABR11\project\Option.m',
'Name', 'Specgram Option',
"NumberTitle', 'off', ...
‘PaperPosition', [18 180 576 432],
'PaperUnits’', 'points’,
'Position', [403 287 192 186],
'Tag', 'Figl’,
'ToolBar', 'none') ;
hl = uicontrol('Parent’', h0,
'Units', 'normalized', ..
'BackgroundColor‘,[l 1 1],
'Callback’', 'WindowType',
'ListboxTop',0, ...
'‘Position', [0.34375 0.2634408602150538 0.4010416666666666
0.1290322580645161],
'String', ['hamming ';'hanning ';'kaiser
';'bartlett'; 'blackman’'],
'Style', 'popupmenu’,
'Tag', 'PopupMenul’,

"Value',1) ;
hl = uicontrol ('Parent',hO,
'Units', 'normalized’',

'BackgroundColor', (0.7 0.7 0.7],
'ListboxTop',0,
'Position' ,matl,
'Style’', 'frame’,
'Tag', 'Framel') ;
hl = uicontrol ('Parent’' hO,
'Units', '"normalized’',
'BackgroundColor',[l 1 1],
'ListboxTop',0, ...
'Position',[0.5104166666666666 0.5860215053763441
0.4166666666666666 0.1290322580645161],
'String’, 'Window Length',

88

'Style', "text',
'Tag', 'Textl') ;

hl = uicontrol('Parent', hO0,
'Units', '‘normalized’,
'BackgroundColor',[l 1 1],
'ListboxTop"',0,
'Position',matZ,
'String', 'Overlab’,
'Style’, 'text’',
'Tag', 'Textd')

hl = uicontrol ('Parent',h0,
'Units', 'normalized', ..
'BackgroundColor',[O 752941176470588 0.752941176470588

0.7529411764705881,
'Callback’', 'close{gct) ',
'ListboxTop',0,
'Position',mat3,
'String', 'OK',
'Tag', 'Pushbuttonl');

hl = uicontrol ('Parent', hO,
'Units', 'normalized’',
'BackgroundColor',[1 1 1],
'Callback', 'WindowWidthSeting',
'ListboxTop',0,
'Position',mat4,
'Style’','edit’,
'Tag', 'Editl'");

hl = uicontrol ('Parent', h0,
'Units', 'normalized’',
'BackgroundColor',[1 1 1],
'Callback', 'OverlabSeting’
'ListboxTop',0,
'Position’' ,math,
'Style!', 'edit’,
'Tag', 'Edit2');

if nargout > 0, fig = h0; end

Spectrogram Options

function SpecgramFftlengthSeting
global g;)
Edit2Handle = findobj ('Tag','Edit3');
F=get (Edit2Handle, 'String’');
g.Options.Specgram.FftSize = eval (F};

function SpecgramOverlabSeting
global g;

Edit2Handle = findobj('Tag', 'Edit2'});
O = get(Edit2Handle, 'String');
g.Options.Specgram.Overlap = eval (0}

function SpecturmPremphasesSeting
global g

Edit4Handle = findobj ('Tag','Edit4'):

P = get(Edit4Handle, 'String');
g.Options.Specgranm.Premphases = eval (P) ;

89

function SpecgramWindowType
global g;
h=findobj ('Tag"', 'PopupMenul') ;
val = get(h,'Value’);

close (gcf)
if val == 1

g.Options.Specgram.WindowType = 'hamming'
elseif val == 2

g.Options. Specgram.WindowType = 'hanning’
elseif val == 3

g.Options. Specgram.WindowType = 'kaiser'
elseif val == 4

g.Options. Specgran.WindowType = 'bartlett’
elseif val = 5

g.Options. Specgram.WindowType = 'blackman'’
end

function SpecgranWindowWidthSeting
global g;

Edit2Handle = findobj('Tag','Editl’);
W=get(Edit2Hand1e,'String');

g.Options. Specgram.WindowWidth = eval (W) ;

Spectrum Analysis
function Spectrum

global g

fs=g.signal.fs;

$select a segment of data with length of SegmentLength in s.
Term=ginput (1) ;

Term=fix (Term*fs)

begining = nmax (Term (1) ,1);
data=g.signal.Data(begining:begining+round(g.Options.Spectrum.Segmen
tLength*fs) -1) ;

$data windowing
window=feval(g.Options.Spectrum.WindowType,round(g.Options.Spectrum.
SegmentLength*fs)) ;

data=data.*window;

$compute fft for the segment (spectral representation)

spectrumn = abs (fft (data,g.Options.Spectrum.FftLength));

$spectrum smoothing, by computing lpc coffecients and thier spectrum
[a d]=lpc(data,g.0ptions.Spectrum.CofficientsNumber);
chSpectrum=d./abs(fft(a,g.Options.Spectrum.FftLength))

$make x axis in frequency unit
frequency=(1:fix(g.Options.Spectrum.FftLength

/2))/(0.5*g.Options. Spectrum.FftLength) *fs;

$plot spectrum and LpcSpecturm.

axes (g.Figure.Axes2Handle) ;
semilogy(frequency,chSpectrum(l:end/2),'-.','Color','k')
hold on

semilogy(frequency,spectrum(l:end/2),'Color‘,'k')

hold off

xlabel ('Frequency,
Hz','FontSize',lO,'FontUnit','normalized','FontWeight','normal');
ylabel ('Amplitude, log
scal','FontSize',lO,'FontUnit','normalized','FontWeight',‘normal');

90

title ('Spectrum
smooting','FontSize‘,10,'FontUnit','normalized‘,'FontWeight',‘normal

')

Spectrum Options Setting

function SpecturmFftlengthSeting
global g;

Edit2Handle = findobj('Tag','Edit2');

F = get(Edit2Handle, 'String'):;
g.Options.Spectrum.FftLength = eval(F);

function SpectrumlpcCoffNumSeting

global g;

EditlHandle = findobj('Tag', 'Editl'");

C = get(EditlHandle, 'String'):
g.Options.Spectrum.CofficientsNumber = eval(C);

function SpectrumSegmentLengthSeting
global g;

Edit3Handle = findobj('Tag',6 'E4dit3"');

S = get(Edit3Handle, 'String');
g.Options.Spectrum. SegmentLength = eval(S);

function SpectrumWindowTypeSeting

global g;

PopupmenulHandle = findobj('Tag’', 'PopupMenul’');
val = get(PopupmenulHandle, 'Value');

$close (gcf)

if val == 1

g.Options.Spectrum.WindowType = 'hanming’
elseif val == 2

g.Options.Spectrum.WindowType = 'hanning'
elseif val == 3

g.Options. Spectrum.WindowType = 'kaiser’
elseif val ==

g.Options.Spectrum.WindowType = 'bartlett’
elseif val == 5

g.Options.Spectrum.WindowType = 'blackman’

end

